There is growing awareness of the need for fishery management policies that are robust to changing environmental, social, and economic pressures. Here we use conventional bioeconomic theory to demonstrate that inherent biological constraints combined with nonlinear supply-demand relationships can generate threshold effects due to harvesting. As a result, increases in overall demand due to human population growth or improvement in real income would be expected to induce critical transitions from high-yield/low-price fisheries to low-yield/high-price fisheries, generating severe strains on social and economic systems as well as compromising resource conservation goals. As a proof of concept, we show that key predictions of the critical transition hypothesis are borne out in oceanic fisheries (cod and pollock) that have experienced substantial increase in fishing pressure over the past 60 y. A hump-shaped relationship between price and historical harvest returns, well demonstrated in these empirical examples, is particularly diagnostic of fishery degradation. Fortunately, the same heuristic can also be used to identify reliable targets for fishery restoration yielding optimal bioeconomic returns while safely conserving resource abundance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699034 | PMC |
http://dx.doi.org/10.1073/pnas.1705525114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!