Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding. In this work, we investigated the influence of the Cys46/Cys55 disulfide bond on the redox properties and on the pH-dependent conformational equilibria of hNgb, using UV-vis spectroelectrochemistry, cyclic voltammetry, electronic absorption spectroscopy and magnetic circular dichroism (MCD). We found that the SS bridge significantly affects the heme Fe(III) to Fe(II) reduction enthalpy (ΔH°') and entropy (ΔS°'), mostly as a consequence of changes in the reduction-induced solvent reorganization effects, without affecting the axial ligand-binding interactions and the polarity and electrostatics of the heme environment. Between pH3 and 12, the electronic properties of the heme of ferric hNgb are sensitive to five acid-base equilibria, which are scarcely affected by the Cys46/Cys55 disulfide bridge. The equilibria occurring at extreme pH values induce heme release, while those occurring between pH5 and 10 alter the electronic properties of the heme without modifying its axial coordination and low spin state. They involve the sidechains of non-coordinating aminoacids close to the heme and at least one heme propionate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2017.10.005DOI Listing

Publication Analysis

Top Keywords

cys46/cys55 disulfide
12
disulfide bond
12
heme
9
influence cys46/cys55
8
bond redox
8
human neuroglobin
8
intramolecular disulfide
8
disulfide bridge
8
electronic properties
8
properties heme
8

Similar Publications

In this work, we investigated the H2O2-induced oligomerization of wild-type human neuroglobin (hNgb) and of some selected variants (C46AC55A, Y44A, Y44F, Y44AC46AC55A, Y44AC46AC55A) to clarify how the process is affected by the Cys46/Cys55 disulfide bond and the distal H-bonding network and to figure out the molecular determinants of the H2O2-induced formation of amyloid type structures and hNgb aggregates. It turns out that hydrogen peroxide exerts a twofold effect on hNgb, inducing both heme breakdown and protein dimerization/polymerization. The enhanced resistance to the oxidizing effect of H2O2 of the disulfide free variants indicates that both effects are strictly influenced by the heme accessibility for H2O2.

View Article and Find Full Text PDF

In the present study, human neuroglobin (hNgb) was found to undergo H O -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping.

View Article and Find Full Text PDF

Human neuroglobin (Ngb) forms an intramolecular disulfide bond between Cys46 and Cys55, with a third Cys120 near the protein surface, which is a promising protein model for heme protein design. In order to protect the free Cys120 and to enhance the protein stability, we herein developed a strategy by designing an additional disulfide bond between Cys120 and Cys15 A15C mutation. The design was supported by molecular modeling, and the formation of Cys15-Cys120 disulfide bond was confirmed experimentally by ESI-MS analysis.

View Article and Find Full Text PDF

Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding.

View Article and Find Full Text PDF

An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity.

Arch Biochem Biophys

June 2016

School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China. Electronic address:

Disulfide bond plays crucial roles in stabilization of protein structure and in fine-tuning protein functions. To explore an approach for rational heme protein design, we herein rationally introduced a pair of cysteines (F46C/M55C) into the scaffold of myoglobin (Mb), mimicking those in native neuroglobin. Molecular modeling suggested that it is possible for Cys46 and Cys55 to form an intramolecular disulfide bond, which was confirmed experimentally by ESI-MS analysis, DTNB reaction and CD spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!