Background: Aim was to determine the dynamics of peripheral blood mononuclear cells (PBMC)- associated total HIV-1 DNA in successfully ART-treated HIV/HCV co-infected patients receiving DAA treatment and to explore possible virological hypotheses underlying the phenomenon.
Methods: Longitudinal, single-centre study measuring total HIV-1 DNA before the start of DAA, at the end of treatment (EOT), and 3 months after treatment. Univariable and multivariable analyses were used to assess factors associated with HIV-1 DNA increase ≥0.5 Log copies/million PBMC. Episomal 2-LTR forms, residual HIV-1 viremia and proviral DNA quasispecies evolution were also investigated.
Results: 119 successfully ART-treated HIV/HCV co-infected patients were included. Median baseline HIV-1 DNA was 3.84 Log copies/million PBMC (95%CI 3.49-4.05), and no significant variation with respect to baseline was found at EOT and after 3 months of DAA termination. In 17% of cases an increase ≥0.5 Log copies/million PBMC was observed at EOT compared to baseline. HIV-1 DNA increase was independently associated with lower baseline HIV-1 DNA, longer HIV suppression, raltegravir-based ART and previous exposure to interferon/ribavirin for HCV treatment. In none of the patients with HIV-1 DNA increase, 2-LTR forms were detected at baseline, while in 2 cases 2-LTR forms were found at EOT, without association with residual HIV-1 RNA viremia. No evidence of viral evolution was observed.
Conclusions: In successfully ART-treated HIV/HCV co-infected patients receiving DAA, PBMC-associated total HIV-1 DNA was quite stable over time, but some patients showed a considerable increase at EOT when compared to baseline. A significantly higher risk of HIV DNA increase was found, in presence of lower cellular HIV reservoir at baseline. Activation of replicative-competent virus generating new rounds of viral replication seems unlikely, while mobilization of cell-associated HIV from tissue reservoirs could be hypothesized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659787 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187095 | PLOS |
PLoS Pathog
January 2025
Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.
View Article and Find Full Text PDFPathogens
December 2024
State Research Center of Virology and Biotechnology "Vector", Koltsovo 630559, Russia.
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic.
Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines.
J Antimicrob Chemother
January 2025
CH Tourcoing, Service Universitaire des Maladies Infectieuses, 59200 Tourcoing, France.
Introduction: The specificity of HIV-1 DNA genotypic resistance tests (GRTs) is hampered by the detection of the APOBEC-context drug resistance mutations (AC DRMs), usually harboured by replication-incompetent proviruses. We sought factors associated with defective sequences in the HIV-1 pol region. In addition, AC DRMs and their link with defective sequences were investigated.
View Article and Find Full Text PDFSci Signal
January 2025
Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!