Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanical stress is a ubiquitous stimulus sensed by membrane proteins, but rarely by synthetic molecules. Inspired by mechano-sensitive ion channels found in cell membranes, tension-responsive transmembrane multiblock amphiphiles were developed. In membranes, a single-transmembrane amphiphile responds to both expanding and contracting tensions to weaken and strengthen the stacking of membrane-spanning units, respectively, and ion transportation is triggered by expanding tension to form a supramolecular channel, while little transportation is observed under a tensionless condition. In contrast, a three-transmembrane amphiphile showed little spectroscopic response to tensions, likely due to weaker stacking of membrane-spanning units than in the single-transmembrane amphiphile. Nevertheless, the three-transmembrane amphiphile shows ion transportation by forming a unimolecular channel even under a tensionless condition, and the ion-transporting activity decreased with expanding tension. Interestingly, the estimated operating force of these synthetic systems was comparable to that of the mechano-sensitive proteins. This study opens the door toward new mechano-sensitive molecular devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b09515 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!