AI Article Synopsis

Article Abstract

Maintaining adequate organ perfusion during cardiac arrest remains a challenge, and various assist techniques have been evaluated. We assessed whether a right ventricular impeller assist device (RVAD) in adjunct to a left ventricular impeller assist device (LVAD) is beneficial. Twenty anesthetized pigs were randomized to maximized circulatory support by percutaneously implanted left- or biventricular assist device(s) during 30 minutes of electrically induced ventricular fibrillation followed by three attempts of cardioversion. Continuous hemodynamic variables were recorded. Cardiac output and myocardial, cerebral, renal, and ileum mucosa tissue perfusion were measured with fluorescent microspheres, and repeated blood gas analyses were obtained. With biventricular support, an increased LVAD output was found compared with left ventricular (LV) support; 3.2 ± 0.2 (SEM) vs. 2.0 ± 0. 2 L/minute just after start of ventricular fibrillation, 3.2 ± 0.1 vs. 2.0 ± 0.1 L/minute after 15 minutes, and 3.0 ± 0.1 vs. 2.1 ± 0.1 L/minute after 30 minutes of cardiac arrest (pg < 0.001). Biventricular support also increased aortic and LV pressure, in addition to end-tidal CO2. Tissue blood flow rates were increased for most organs with biventricular support. Blood gas analyses showed improved oxygenation and lower s-lactate values. However, myocardial perfusion was degraded with biventricular support and return of spontaneous circulation less frequent (5/10 vs. 10/10; p = 0.033). Biventricular support was associated with high intraventricular pressure and decreased myocardial perfusion pressure, correlating significantly with flow rates in the LV wall. A transmural flow gradient was observed for both support modes, with better maintained subepicardial than midmyocardial and subendocardial perfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000694DOI Listing

Publication Analysis

Top Keywords

biventricular support
20
cardiac arrest
12
biventricular assist
8
assist devices
8
ventricular impeller
8
impeller assist
8
assist device
8
left ventricular
8
support
8
ventricular fibrillation
8

Similar Publications

Dilated cardiomyopathy (DCM) is a serious condition often leading to acute heart failure (HF), with diverse etiologies including viral myocarditis. This report details a case of reversible DCM in a 34-year-old male who presented with symptoms of acute HF. Diagnostic workup revealed biventricular dilation with severe systolic dysfunction and serology confirming herpes simplex virus infection.

View Article and Find Full Text PDF

Biventricular assist devices (BiVAD) are capable of providing mechanical support to the left and right ventricles to improve blood supply in heart failure, thereby maintaining patients' lives and improving their quality of life. But there is evidence that the incidence of aortic valve incompetence and other valvular pathologies is related to BiVAD support. Such as constant speed (CS) control may cause the valve to close completely and lose its normal valve function.

View Article and Find Full Text PDF

Background: Transthyretin cardiac amyloidosis is associated with various arrhythmias, including atrioventricular block. Despite this correlation, established treatments for transthyretin cardiac amyloidosis-associated arrhythmias are lacking. Left bundle branch area pacing is a promising physiological pacing technique.

View Article and Find Full Text PDF

Despite arrhythmogenic right ventricular cardiomyopathy (ARVC) being predominantly a right ventricular (RV) disease, concomitant left ventricular (LV) involvement has been recognized. ARVC is diagnosed by the RV-centric 2010 Task Force Criteria(TFC) using routine echocardiography, but previous studies have suggested that strain imaging may be more sensitive to detect RV and LV dysfunction. No data however are available regarding the additional value of combining biventricular strain for risk stratification.

View Article and Find Full Text PDF

Background: Right ventricular restrictive physiology (RVRP) is a common occurrence in repaired tetralogy of Fallot (rTOF). The relationship of RVRP with biventricular blood flow components and kinetic energy (KE) from 4-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is unclear.

Objectives: The purpose of this study was to investigate the association of 4D flow CMR parameters with RVRP in rTOF patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!