An applied electric field can fundamentally eliminate the Leidenfrost effect (formation of a vapor layer at the solid-liquid interface at high temperatures). This study analyzes electrostatic suppression of the Leidenfrost state on liquid substrates. Electrostatic suppression on silicone oil and Wood's metal (liquid alloy) is studied via experimentation, high-speed imaging, and analyses. It is seen that the nature of electrostatic suppression can be drastically different from that on a solid substrate. First, the Leidenfrost droplet completely penetrates into the silicone oil substrate and converts to a thin film under an electric field. This is due to the existence of an electric field inside the substrate and the deformability of the silicone oil interface. A completely different type of suppression is observed for Wood's metal and solid substrates, which have low deformability and lack an electric field in the substrate. Second, the minimum voltage to trigger suppression is significantly lower on silicone oil when compared to Wood's metal and solid substrates. Fundamental differences between these transitions are analyzed, and a multiphysics analytical model is developed to predict the vapor layer thickness on deformable liquids. Overall, this study lays the foundation for further studies on electrostatic manipulation of the Leidenfrost state on liquids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02878 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, College of Engineering and Applied Sciences, No. 163 Xianlin Avenue, Qixia District, Nanjing, Nanjing, CHINA.
Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!