An efficient protein-folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally-induced aggregate of fibroblast growth factor-1 (FGF-1), a small globular protein, by solid-state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF-1 also indicate the presence of unstructured regions that exhibit hydration-dependent dynamics and suggest that unstructured regions of aggregated FGF-1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF-1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria - the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775177 | PMC |
http://dx.doi.org/10.1002/pro.3332 | DOI Listing |
Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development.
View Article and Find Full Text PDFCurr Opin Genet Dev
January 2025
School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!