Unlabelled: Cervical spondylosis and intervertebral disc (IVD) degeneration are the most common cause for compression of the spinal cord and/or its roots. Total IVD arthroplasty, as a modern alternative to surgical treatment of IVD degeneration, is gaining popularity in many neurosurgical clinics around the world. Aim - the study aim was to conduct a multicenter analysis of cervical spine arthroplasty with an IVD prosthesis M6-C ('Spinal Kinetics', USA).

Material And Methods: The study included 112 patients (77 males and 35 females). All patients underwent single-level discectomy with implantation of the artificial IVD prosthesis M6-C. The follow-up period was up to 36 months. Dynamic assessment of the prosthesis was based on clinical parameters (pain intensity in the cervical spine and upper extremities (visual analog scale - VAS); quality of life (Neck Disability Index - NDI)); and subjective satisfaction with the results of surgical treatment (Macnab scale) and instrumental data (range of motion in the operated spinal motion segment, degree of heterotopic ossification (McAfee-Suchomel classification), and time course of degenerative changes in the adjacent segments).

Download full-text PDF

Source
http://dx.doi.org/10.17116/neiro201781546-55DOI Listing

Publication Analysis

Top Keywords

ivd degeneration
8
surgical treatment
8
cervical spine
8
ivd prosthesis
8
prosthesis m6-c
8
ivd
5
[analysis total
4
cervical
4
total cervical
4
cervical disc
4

Similar Publications

Background: Pain of a chronic nature remains the foremost concern in tertiary spine clinics, yet its elusive nature and quantification challenges persist. Despite extensive research and education on low back pain (LBP), the realm of diagnostic practices lacks a unified approach. Clinically, LBP exhibits a multifaceted character, encompassing conventional assessments of severity and disability, alongside nuanced attributes like pain characterization, duration, and patient expectations.

View Article and Find Full Text PDF

In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Objective: Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear.

Methods: According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs).

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!