Background: Prominent among all the organisms that have a potential value for the production of new medicines, are endophytes, fungi and bacteria that live inside plants without harming them. In this study, a total lyophilized extract (TLE) of Paenibacillus polymyxa RNC-D was used. The P. polymyxa lineages are known for their capacity to segregate a large number of extracellular enzymes and bioactive substances.
Methods: The TLE of Paenibacillus polymyxa RNC-D was tested in cell viability assays for cytotoxicity and cytokine production in BALB/3T3 and J774A.1 cell lineages.
Results: A 50% mortality rate of fibroblasts (BALB/3T3) was observed in the 1.171±0.161 mg/mL and 0.956±0.112 mg/mL doses after 48 and 72 hours, respectively, as well as a 50% mortality rate of macrophage cells (J774A.1) in the 0.994±0.170 mg/mL and 0.945±0.280 mg/mL doses after 48 and 72 hours, respectively. The ≈1 mg/mL concentration significantly affected the kinetic of growth in all the measured periods. The extract induced apoptosis and necrosis 24 hours after the ≈1 mg/mL concentration in both tested lineages. The treatment with the ≈1 mg/mL concentration led to the production of TNF-α and IFN-γ cytokines in 24 hours. IL-12 and IL-10 began to be detected as a result of the treatment with 0.1 mg/mL. However, with the 0.5 mg/mL dose in 24 hours, a significant reduction in IL-10 was observed.
Conclusion: Our data suggest that the TLE of P. polymyxa RNC-D modulated the production of cytokines with different patterns of immune response in a dose-dependent way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389201018666171026155522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!