Short interfering RNA (siRNA) is a promising molecular tool for cancer therapy, but its clinical success is limited by the lack of robust in vivo delivery systems. Rationally designed DNA nanoparticles (DNPs) have emerged as facile delivery vehicles because their physicochemical properties can be precisely controlled. Nonetheless, few studies have used DNPs to deliver siRNAs in vivo, and none has demonstrated therapeutic efficacy. Herein, we constructed a number of DNPs of rectangular and tubular shapes with varied dimensions using the modular DNA brick method for the systemic delivery of siRNA that targets anti-apoptotic protein Bcl2. The siRNA delivered by the DNPs inhibited cell growth both in vitro and in vivo, which suppressed tumor growth in a xenograft model that specifically correlated with Bcl2 depletion. This study suggests that DNPs are effective tools for the systemic delivery of therapeutic siRNA and have great potential for further clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254864PMC
http://dx.doi.org/10.1002/anie.201709485DOI Listing

Publication Analysis

Top Keywords

systemic delivery
12
dna nanoparticles
8
cell growth
8
sirna
5
dnps
5
delivery bc12-targeting
4
bc12-targeting sirna
4
sirna dna
4
nanoparticles suppresses
4
suppresses cancer
4

Similar Publications

Cannabidiol (CBD) is widely used to alleviate the syndromes of epilepsy. However, the marketed oral CBD formulation has the prominent first-pass effect. Here, a cannabidiol-loaded hollow suppository (CHS) was developed using three-dimensional (3D) printing technology.

View Article and Find Full Text PDF

Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals.

Int J Pharm

December 2024

Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt. Electronic address:

Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability.

View Article and Find Full Text PDF

Thermosensitive hydrogel delivery of BCG lysates and tumor antigens: A novel strategy for melanoma immunoprevention and therapeutics.

Biochem Biophys Res Commun

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Melanoma, recognized as one of the most aggressive forms of skin cancer, continues to show a steady rise in global incidence. While Bacillus Calmette-Guérin (BCG) has been identified as a potential intralesional therapy for melanoma, its therapeutic efficacy remains suboptimal. This study introduces a novel thermosensitive hydrogel formulated with BCG lysates and either OVA peptide or tumor cell lysates (PPP-BCG-OVA/TL).

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!