The recently established human umbilical cord blood-derived erythroid progenitor (HUDEP) cell lines have equipped red blood cell researchers with valuable in vitro models of erythroid development. Of the three established HUDEP cell lines, HUDEP-2 cells express predominantly adult β-globin and most closely resemble adult erythroid cells. This chapter describes culture protocols for the maintenance and erythroid differentiation of HUDEP-2 cells. Methods to genetically manipulate HUDEP-2 cells using a CRISPR/Cas9 nuclease-based approach are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7428-3_17DOI Listing

Publication Analysis

Top Keywords

hudep cell
12
cell lines
12
hudep-2 cells
12
human umbilical
8
umbilical cord
8
cord blood-derived
8
blood-derived erythroid
8
erythroid progenitor
8
progenitor hudep
8
erythroid
5

Similar Publications

Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear.

View Article and Find Full Text PDF

The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia.

Hum Mol Genet

December 2024

College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China.

The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.

View Article and Find Full Text PDF

Activation of γ-globin expression by a common variant disrupting IKAROS-binding motif in β-thalassemia.

J Genet Genomics

November 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. Electronic address:

Programmed silencing of γ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes, which determine the stage-specific genome architecture in this region. Identification of cis- or trans-acting mutations contributing to the diverse extent of Hb F might illustrate the underlying mechanism of γ-β globin switching. Here, we recruit a cohort of 1142 β-thalassemia patients and dissect the natural variants in the whole β-globin gene cluster through a targeted next-generation sequencing panel.

View Article and Find Full Text PDF
Article Synopsis
  • - In β-thalassemia, excessive α-globin chains disrupt the development of red blood cells, leading to anemia, and altered levels of miRNAs like miR-6747-3p have been observed in patients with this condition.
  • - The study confirmed higher expression levels of miR-6747-3p in β-thalassemia major patients compared to healthy individuals, revealing its positive correlation with fetal hemoglobin (HbF) levels.
  • - Overexpressing miR-6747-3p led to reduced cell proliferation and increased apoptosis, while promoting erythroid differentiation and γ-globin expression by targeting the BCL11A gene, suggesting it could be a potential therapeutic target for β-thal
View Article and Find Full Text PDF

Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: (1) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; (2) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; (3) response to GC of 2 cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!