We analyzed the secondary structure of the small subunit (SSU) rRNA genes of Mobilida (Ciliophora, Peritrichia) and found that the secondary structures of some regions within the SSU-rRNA gene are distinct between the families Trichodinidae and Urceolariidae. Therefore, some of these important regions including H10, H11, H17, H47, H29, H30, H37, E10-1, H45-H46, and V4 (E23-4, E23-7) could be used as the barcodes for classification of these two families. In contrast, V4 (E23-1, E23-2) belongs to a hypervariable region and is not a good barcode at the genus level because of its great inter-specific variation. Our results indicated that the comprehensive analysis of the secondary structure of SSU-rRNA genes is a reliable auxiliary approach for phylogenic study of mobilid ciliates. It was further found that the coevolution between hosts or habitats and the Mobilida ciliates was existent, because the host types and their habitats were critical ecological factors that influenced the evolution of Mobilida ciliates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-017-1379-7 | DOI Listing |
Int J Biol Macromol
January 2025
College of Life Science, Yangtze University, Jingzhou, China. Electronic address:
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India. Electronic address:
Protein co-precipitation overcomes the limitations of individual proteins and improves their nutritional profile and functional properties. This study examined the impact of co-precipitation and high-pressure (HP) treatment on millet-moringa protein co-precipitate structure and functional properties. The co-precipitation has significantly (p < 0.
View Article and Find Full Text PDFBlood Coagul Fibrinolysis
December 2024
Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, China.
Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!