Microstructures and mechanics in the colloidal film drying process.

Soft Matter

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Published: November 2017

We use Brownian Dynamics (BD) simulations and continuum models to study the microstructures and mechanics in the colloidal film drying process. Colloidal suspensions are compressed between a planar moving interface and a stationary substrate. In the BD simulations, we develop a new Energy Minimization Potential-Free (EMPF) algorithm to enforce the hard-sphere potential in confined systems and to accurately measure the stress profile. The interface moves either at a constant velocity U or via a constant imposed normal stress Σ. Comparing the interface motions to the particle Brownian motion defines the Péclet numbers Pe = Ua/d and Pe = Σa/kT, respectively, where d = kT/ζ with kT the thermal energy scale, ζ the single-particle resistance, and a the particle radius. With a constant interface velocity, thermodynamics drives the suspension behavior when Pe ≪ 1, and homogeneous crystallization appears when the gap spacing between the two boundaries pushes the volume fraction above the equilibrium phase boundary. In contrast, when Pe ≫ 1, local epitaxial crystal growth appears adjacent to the moving interface even for large gap sizes. Interestingly, the most amorphous film microstructures are found at moderate Pe. The film stress profile develops sharp transitions and becomes step-like with growing Péclet number. With a constant imposed stress, the interface stops moving as the suspension pressure increases and the microstructural and mechanical behaviors are similar to the constant velocity case. Comparison with the simulations shows that the model accurately captures the stress on the moving interface, and quantitatively resolves the local stress and volume fraction distributions for low to moderate Péclet numbers. This work demonstrates the critical role of interface motion on the film microstructures and stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm01585bDOI Listing

Publication Analysis

Top Keywords

moving interface
12
microstructures mechanics
8
mechanics colloidal
8
colloidal film
8
film drying
8
drying process
8
interface
8
stress profile
8
constant velocity
8
constant imposed
8

Similar Publications

The concepts of planetary boundaries are influential in the sustainability literature and assist in delineating the 'safe operating spaces' beyond which critical Earth system processes could collapse. Moving away from our current trajectory towards 'hothouse Earth' will require knowledge of how Earth systems have varied throughout the Holocene, and whether and how far we have deviated from past ranges of variability. Such information can inform decisions about where change could be resisted, accepted or where adaptation is inevitable.

View Article and Find Full Text PDF

Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

The droplet dynamics of asymmetrical impingement on moving ridged surface.

J Colloid Interface Sci

January 2025

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:

Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.

View Article and Find Full Text PDF

NeuroCarto: A Toolkit for Building Custom Read-out Channel Maps for High Electrode-count Neural Probes.

Neuroinformatics

January 2025

Neuro Electronics Res. Flanders (NERF), Heverlee, 3001, Belgium.

Neuropixels probes contain thousands of electrodes across one or more shanks and are sufficiently small to allow chronic recording of neural activity in freely behaving small animals. However, the joint increase in the number of electrodes and miniaturization of the probe package has led to a compromise in which groups of electrodes share a single read-out channel and only a fraction of the electrodes can be read out at any given time. Experimenters then face the challenge of selecting a subset of electrodes (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!