In neo-Darwinian theory, adaptation results from a response to selection on relatively slowly accumulating genetic variation. However, more rapid adaptive responses are possible if selectable or plastic phenotypic variation is produced by epigenetic differences in gene expression. This rapid path to adaptation may prove particularly important when genetic variation is lacking, such as in small, bottlenecked, or asexual populations. To examine the potential for an epigenetic contribution to adaptive variation, we examined morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum, from distinct habitats (two lakes versus two rivers). These populations exhibit habitat specific differences in shell shape, and these differences are consistent with adaptation to water current speed. Between these same habitats, we also found significant genome wide DNA methylation differences. The differences between habitats were an order of magnitude greater than the differences between replicate sites of the same habitat. These observations suggest one possible mechanism for the expression of adaptive shell shape differences between habitats involves environmentally induced epigenetic differences. This provides a potential explanation for the capacity of this asexual snail to spread by adaptive evolution or plasticity to different environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658341 | PMC |
http://dx.doi.org/10.1038/s41598-017-14673-6 | DOI Listing |
Nat Commun
January 2025
Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA.
The Thorny Skate (Amblyraja radiata) is a vulnerable species displaying a discrete size-polymorphism in the northwest Atlantic Ocean (NWA). We conducted whole genome sequencing of samples collected across its range. Genetic diversity was similar at all sampled sites, but we discovered a ~ 31 megabase bi-allelic supergene associated with the size polymorphism, with the larger size allele having introgressed in the last ~160,000 years B.
View Article and Find Full Text PDFOecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFSpatially resolved transcriptomics has made it possible to study the subcellular organization of mRNA, a critical aspect of cellular function. However, there is a dearth of analytical tools to identify and interpret the functional significance of subcellular spatial distribution patterns. To address this, we present CellSP, a computational framework for identifying, visualizing, and characterizing consistent subcellular spatial patterns of mRNA.
View Article and Find Full Text PDFAlterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.
View Article and Find Full Text PDFUnlabelled: Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti- phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ∼50,000 cells from cultures of a human pathobiont, infected with a lytic bacteriophage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!