Non-steroidal anti-inflammatory drugs (NSAIDs) provide important benefits to millions of patients, but are associated with a number of serious adverse events. These adverse drug reactions are an important clinical issue and a serious public health risk. While most unfortunate responses in human to NSAIDs are mild and may disappear after decreasing the dose or withdrawal of the drug, some of them can produce serious outcomes. Currently, little is known regarding the effects of NSAIDs on global RNA expression in normal, non-transformed cells. Therefore, in this report, the effect of NSAIDs, COX-nonspecific and COX-2-specific inhibitors, indomethacin and nimesulide respectively, commonly used medications worldwide for the reduction of pain, fever, inflammation and stiffness, on transcriptomic signature of human dermal fibroblasts was investigated. A total of 3803 differentially expressed genes with a fold change greater than or equal to 1.3 and below than or equal to 0.7 for whole genome transcripts, with a P value of < 0.05 were identified in response to all applied conditions. We found that although the total number of deregulated genes was relatively high at such criteria, changes in fibroblast transcriptome profile after treatment at selected experimental conditions were however smallish, as the selected drugs slightly modulate transcriptome with only a few genes with expression altered a bit more than twice. Nevertheless, transcriptomic data has its own limitations and it cannot reflect all post-transcriptional changes, which in turn may cause same risks, especially for a long time of medication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2017.10.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!