Vegetable oils are used as a base for the synthesis of polymers and monomers with structures similar to that of petroleum, as plasticizers for conventional polymers and biodegrading additives. The Moringa oleifera oil was extracted from seeds and polymerized after being submitted to 16 h of microwave irradiation without catalysers. This polymer was characterized and the efficiency of the oil polymerization was verified by the reduction of double bonds and the increase of molecular weight up to 50,000 g mol. Films produced by a mixture of low-density polyethylene (LDPE) with poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) present low tensile resistance and low biodegradation behaviour. In order to improve those properties, the Moringa polymer (PMO) was mixed with LDPE and PBAT/PLA in specific mass concentrations. The films produced with this mixture were characterized and submitted to biodegradation analysis. The PMO behaves as a compatibilizer by improving thermal properties, reducing the crystalline phase and improving the biodegradation behaviour. The biodegradation improved up to five times in comparison to conventional polymers and it restores the mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2017.1397763DOI Listing

Publication Analysis

Top Keywords

conventional polymers
8
films produced
8
produced mixture
8
biodegradation behaviour
8
biodegradation
5
biodegradation moringa
4
moringa oleifera's
4
oleifera's polymer
4
polymer blends
4
blends vegetable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!