Distinct processing of objects and space has been an organizing principle for studying higher-level vision and medial temporal lobe memory. Here, however, we discuss how object and spatial information are in fact closely integrated in vision and memory. The ventral, object-processing visual pathway carries precise spatial information, transformed from retinotopic coordinates into relative dimensions. At the final stages of the ventral pathway, including the dorsal anterior temporal lobe (TEd), object-sensitive neurons are intermixed with neurons that process large-scale environmental space. TEd projects primarily to perirhinal cortex (PRC), which in turn projects to lateral entorhinal cortex (LEC). PRC and LEC also combine object and spatial information. For example, PRC and LEC neurons exhibit place fields that are evoked by landmark objects or the remembered locations of objects. Thus, spatial information, on both local and global scales, is deeply integrated into the ventral (temporal) object-processing pathway in vision and memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920781 | PMC |
http://dx.doi.org/10.1038/nn.4657 | DOI Listing |
Biomimetics (Basel)
December 2024
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
Humanoid robots are becoming a global research focus. Due to the limitations of bipedal walking technology, mobile humanoid robots equipped with a wheeled chassis and dual arms have emerged as the most suitable configuration for performing complex tasks in factory or home environments. To address the high redundancy issue arising from the wheeled chassis and dual-arm design of mobile humanoid robots, this study proposes a whole-body coordinated motion control algorithm based on arm potential energy optimization.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Artificial Intelligence, Tongmyong University, Busan 48520, Republic of Korea.
Depth estimation plays a pivotal role in advancing human-robot interactions, especially in indoor environments where accurate 3D scene reconstruction is essential for tasks like navigation and object handling. Monocular depth estimation, which relies on a single RGB camera, offers a more affordable solution compared to traditional methods that use stereo cameras or LiDAR. However, despite recent progress, many monocular approaches struggle with accurately defining depth boundaries, leading to less precise reconstructions.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
December 2024
Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California, USA.
Background: Fine motor skill deficits have been reported for children with histories of prenatal alcohol exposure, but little is known whether impaired motor skill extends to the regulation of precision grip control.
Methods: Children with (n = 15) and without (n = 17) histories of heavy prenatal alcohol exposure used their dominant hand to grasp, lift, and hold in space a small-instrumented object with a mass of 19 g. Object mass was also experimentally increased by separately adding two aluminum cubes with mass of 200 and 400 g.
Rev Sci Instrum
December 2024
College of Intelligent Manufacturing, Long Dong University, Qingyang, Gansu 745000, China.
The deflector jet pressure servo valve (DJPSV), a critical component of the aircraft brake servo system, requires a precise foundational model for performance analysis, optimization, and enhancement. However, the complexity of the jet process within the V-groove of the deflector plate presents challenges for accurate mathematical modeling. To address this issue, the paper takes the DJPSV as the research object, carries out detailed mathematical modeling of its components, analyzes the influencing factors of the performance of the key component-the front stage-and optimizes the design of the key factors.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.
For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!