Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2017.1339180 | DOI Listing |
Sci Rep
January 2025
CALCE University of Maryland, College Park, MD, 20742, USA.
Remaining useful life (RUL) prediction is a crucial aspect of the prognostics health management of lithium-ion batteries (LIBs). Owing to the influence of resampling technology, particle degradation is often observed in the particle filter-based RUL prediction of LIBs, resulting in a low prediction accuracy and large uncertainty. In this paper, a novel particle flow filter with the grey model method (GM-PFF) is proposed to forecast the RUL and state of health of batteries.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of food science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China. Electronic address:
Environmental concerns stemming from the widespread use of polyethylene packaging and the perishability of fresh products have promoted the development of antimicrobial biodegradable packaging films in preservation of vegetables. In this study, antimicrobial films based on chitosan (CS)-nisin (Ni)-nanocrystalline cellulose (NCC) were characterized, and its preservation effect applied to baby cabbage was investigated. The results suggest that 1 % CS-0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFVet Parasitol
January 2025
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. Electronic address:
Dermanyssus gallinae (D. gallinae), the poultry red mite (PRM), is a haematophagous pest infesting poultry and wild birds. In studies of the biology of D.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!