Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au(p-MBA) (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au(p-MBA) is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769702PMC
http://dx.doi.org/10.1021/acs.jpclett.7b02621DOI Listing

Publication Analysis

Top Keywords

subatomic resolution
8
twinned fcc
8
gold atoms
8
fcc structure
8
microed structure
4
structure aup-mba
4
aup-mba subatomic
4
resolution reveals
4
reveals twinned
4
cluster
4

Similar Publications

High resolution information is important for accurate structure modelling. However, this level of detail is typically difficult to attain in macromolecular crystallography because the diffracted intensities rapidly fade with increasing resolution. The problem cannot be circumvented by increasing the fluence as this leads to detrimental radiation damage.

View Article and Find Full Text PDF

The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p_{T}) hadron trigger in proton-proton and central Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions.

View Article and Find Full Text PDF

Wide-Band Unambiguous Quantum Sensing via Geodesic Evolution.

Phys Rev Lett

June 2024

Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.

We present a quantum sensing technique that utilizes a sequence of π pulses to cyclically drive the qubit dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing capabilities for signal detection and individual addressing of quantum systems, including spins.

View Article and Find Full Text PDF

Subatomic structure of orthorhombic thaumatin at 0.89 Å reveals that highly flexible conformations are crucial for thaumatin sweetness.

Biochem Biophys Res Commun

April 2024

Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan; Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Thaumatin is a sweet-tasting protein that elicits a sweet taste at a threshold of approximately 50 nM. Structure-sweetness relationships in thaumatin suggest that the basicity of two amino acids residues, Arg82 and Lys67, are particularly responsible for sweetness. Using tetragonal crystals, our structural analysis suggested that flexible sidechain conformations of these two residues play an important role in sweetness.

View Article and Find Full Text PDF

Structural Analysis of Single-Atom Catalysts by X-ray Absorption Spectroscopy.

Acc Chem Res

February 2024

Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.

ConspectusMetal nanoparticles (NPs) are one of the most frequently used heterogeneous catalysts. However, only the surface atoms in the NPs can participate in catalytic reactions. To maximize the atomic efficiency, the active sites can be reduced to single atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!