Highly stereoselective cyclopropanation of various olefins with diazosulfones catalyzed by Ru(ii)-Pheox complexes.

Chem Commun (Camb)

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Japan.

Published: November 2017

A highly stereoselective cyclopropanation of various olefins with diazosulfones catalyzed by chiral Ru(ii)-Pheox complexes was developed to give chiral cyclopropyl sulfones in high yields (up to 99%) with excellent trans-selectivity and enantioselectivity (up to 98% ee).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc05951eDOI Listing

Publication Analysis

Top Keywords

highly stereoselective
8
stereoselective cyclopropanation
8
cyclopropanation olefins
8
olefins diazosulfones
8
diazosulfones catalyzed
8
ruii-pheox complexes
8
catalyzed ruii-pheox
4
complexes highly
4
catalyzed chiral
4
chiral ruii-pheox
4

Similar Publications

A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols.

Nat Commun

January 2025

The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.

Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.

View Article and Find Full Text PDF

The development of new protocols for stereospecific and stereoselective halogenation transformations by mild reaction conditions is a highly desirable research target for the chemical and pharmaceutical industries. Following the straightforward methodology for directly transforming a wide scope of alcohols to alkyl bromides and chlorides using substoichiometric amounts of thioureas and N-halo succinimides (NXS) as a halogen source in a single step, we noticed that in apolar solvents bromination of chiral secondary alcohols did not produce the expected racemates. In this study, the stereochemical aspects of the bromination reaction were examined.

View Article and Find Full Text PDF

Direct Synthesis of Unprotected C-Glycosides via Photoredox Activation of Glycosyl Ester.

Org Lett

January 2025

School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.

Synthetic C-glycosides play a crucial role in molecular biology and medicine. With the surge of interest in C-glycosides and the demand to provide efforts with sufficient feedstock, it is highly significant to pursue novel methodologies to access C-glycosides in a concise and efficient manner. Here, we disclose an attractive strategy that diverges itself from conventional multistep reaction sequences involving the manipulations of protecting groups.

View Article and Find Full Text PDF

Calcidiol (25(OH)VD) and calcitriol (1α,25(OH)VD) are active vitamin D with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits.

View Article and Find Full Text PDF

The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!