Objective: Late-onset Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder. Associations of the glutathione S-transferases (GSTs) polymorphisms with the risk factors for AD have not been definitely confirmed. We investigated the association of GSTM1 and GSTT1 null deletion and GSTP1 313 A/G polymorphisms and the risk of AD in an Iranian population.

Methods: The case group consisted of 280 individuals with AD and the control group included 168 age-matched healthy individuals. The genotyping of the GSTP1 polymorphism was determined by PCR-RFLP and the GSTM1 and GSTT1 deletions were done by multiplex PCR method.

Results: The GSTP1 AG genotype was significantly lower (p = 0.005; OR = 0.57, 95% CI: 0.38-0.84) in the patients (41.1%) than the control group (56.5%). The GSTM1 null genotype was significantly higher (p < 0.001) in the patients (40.5%) than the control group (15.8%). The GSTT1 null genotype was significantly higher (p < 0.038) in the patients (31.2%) than the control group (21.5%). The patients homozygous for the GSTM1 and GSTT1 null alleles showed a 3.5 and 1.5-fold increased risk of AD, respectively. There were interaction between GSTP1 AG genotype and absence of APOE e4 allele (p = 0.001), as well as presence of APOE ε4 and GSTM1 null genotype (p < 0.0001).

Conclusion: These findings suggested that GSTM1 and GSTT1 null deletions may be associated with susceptibility to AD and people with APOE e4 and GSTM1 null deletion have a higher increased risk for Late-onset AD in Iranian population.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01616412.2017.1390902DOI Listing

Publication Analysis

Top Keywords

glutathione s-transferases
8
late-onset alzheimer's
8
alzheimer's disease
8
polymorphisms risk
8
gstm1 gstt1
8
control group
8
association glutathione
4
s-transferases variations
4
variations risk
4
risk late-onset
4

Similar Publications

Glutathione S-transferases (GSTs) are promising pharmacological targets for developing antiparasitic agents against helminths, as they play a key role in detoxifying cytotoxic xenobiotics and managing oxidative stress. Inhibiting GST activity can compromise parasite viability. This study reports the successful identification of two selective inhibitors for the mu-class glutathione S-transferase of 25 kDa (Ts25GST) from , named and , using a computationally guided approach.

View Article and Find Full Text PDF

Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter.

View Article and Find Full Text PDF

Background: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An.

View Article and Find Full Text PDF

Responses of biological characteristics and detoxification enzymes in the fall armyworm to methoxyfenozide stress.

J Econ Entomol

January 2025

Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China.

Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group.

View Article and Find Full Text PDF

Fungi on the cuticle surface increase the resistance of Aedes albopictus to deltamethrin.

Insect Sci

January 2025

National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.

Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!