A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advantages of Relative versus Absolute Data for the Development of Quantitative Structure-Activity Relationship Classification Models. | LitMetric

Advantages of Relative versus Absolute Data for the Development of Quantitative Structure-Activity Relationship Classification Models.

J Chem Inf Model

Department of Computing and Numerical Analysis, University of Córdoba, Albert Einstein building, Campus de Rabanales, E-14071, Córdoba, Spain.

Published: November 2017

The appropriate selection of a chemical space represented by the data set, the selection of its chemical data representation, the development of a correct modeling process using a robust and reproducible algorithm, and the performance of an exhaustive training and external validation determine the usability and reproducibility of a quantitative structure-activity relationship (QSAR) classification model. In this paper, we show that the use of relative versus absolute data in the representation of the data sets produces better classification models when the other processes are not modified. Relative data considers a reference frame to measure the chemical characteristics involved in the classification model, refining the data set representation and smoothing the lack of chemical information. Three data sets with different characteristics have been used in this study, and classifications models have been built applying the support vector machine algorithm. For randomly selected training and test sets, values of accuracy and area under the receiver operating characteristic curve close to 100% have been obtained for the generation of the models and external validations in all cases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.7b00492DOI Listing

Publication Analysis

Top Keywords

relative versus
8
versus absolute
8
data
8
absolute data
8
quantitative structure-activity
8
structure-activity relationship
8
classification models
8
selection chemical
8
data set
8
data representation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!