Using a high terahertz (THz) electric field (E), the carrier scattering in graphene was studied with an electric field of up to 282 kV/cm. When the grain size of graphene monolayers varies from small (5 μm) and medium (70 μm) to large grains (500 μm), the dominant carrier scattering source in large- and small-grained graphene differs at high THz field, i.e., there is optical phonon scattering for large grains and defect scattering for small grains. Although the electron-optical phonon coupling strength is the same for all grain sizes in our study, the enhanced optical phonon scattering in the high THz field from the large-grained graphene is caused by a higher optical phonon temperature, originating from the slow relaxation of accelerated electrons. Unlike the large-grained graphene, lower electron and optical phonon temperatures are found in the small-grained graphene monolayer, resulting from the effective carrier cooling through the defects, called supercollisions. Our results indicate that the carrier mobility in the high-crystalline graphene is easily vulnerable to scattering by the optical phonons. Thus, controlling the population of defect sites, as a means for carrier cooling, can enhance the carrier mobility at high electric fields in graphene electronics by suppressing the heating of optical phonons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b12812DOI Listing

Publication Analysis

Top Keywords

optical phonon
16
carrier cooling
12
graphene
9
graphene monolayer
8
electric field
8
carrier scattering
8
large grains
8
small-grained graphene
8
high thz
8
thz field
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!