Virtual environments (VE) allow testing complex behaviors in naturalistic settings by combining highly controlled visual stimuli with spatial navigation and other cognitive tasks. They also allow for the recording of eye movements using high-precision eye tracking techniques, which is important in electrophysiological studies examining the response properties of neurons in visual areas of nonhuman primates. However, during virtual navigation, the pattern of retinal stimulation can be highly dynamic which may influence eye movements. Here we examine whether and how eye movement patterns change as a function of dynamic visual stimulation during virtual navigation tasks, relative to standard oculomotor tasks. We trained two rhesus macaques to use a joystick to navigate in a VE to complete two tasks. To contrast VE behavior with classic measurements, the monkeys also performed a simple Cued Saccade task. We used a robust algorithm for rapid classification of saccades, fixations, and smooth pursuits. We then analyzed the kinematics of saccades during all tasks, and specifically during different phases of the VE tasks. We found that fixation to smooth pursuit ratios were smaller in VE tasks (4:5) compared to the Cued Saccade task (7:1), reflecting a more intensive use of smooth pursuit to foveate targets in VE than in a standard visually guided saccade task or during spontaneous fixations. Saccades made to rewarded targets (exploitation) tended to have increased peak velocities compared to saccades made to unrewarded objects (exploration). VE exploitation saccades were 6% slower than saccades to discrete targets in the Cued Saccade task. Virtual environments represent a technological advance in experimental design for nonhuman primates. Here we provide a framework to study the ways that eye movements change between and within static and dynamic displays.

Download full-text PDF

Source
http://dx.doi.org/10.1167/17.12.15DOI Listing

Publication Analysis

Top Keywords

saccade task
16
virtual navigation
12
eye movements
12
cued saccade
12
eye movement
8
primates virtual
8
tasks
8
navigation tasks
8
virtual environments
8
nonhuman primates
8

Similar Publications

Background And Hypothesis: Sequential saccade planning requires corollary discharge (CD) signals that provide information about the planned landing location of an eye movement. These CD signals may be altered among individuals with schizophrenia (SZ), providing a potential mechanism to explain passivity and anomalous self-experiences broadly. In healthy controls (HC), a key oculomotor CD network transmits CD signals from the thalamus to the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and also remaps signals from FEF to IPS.

View Article and Find Full Text PDF

Disrupted microsaccade responses in late-life depression.

Sci Rep

January 2025

Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.

Late-life depression (LLD) is a psychiatric disorder in older adults, characterized by high prevalence and significant mortality rates. Thus, it is imperative to develop objective and cost-effective methods for detecting LLD. Individuals with depression often exhibit disrupted levels of arousal, and microsaccades, as a type of fixational eye movement that can be measured non-invasively, are known to be modulated by arousal.

View Article and Find Full Text PDF

Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes.

Br J Hosp Med (Lond)

December 2024

Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.

View Article and Find Full Text PDF

Correlations Between Oculometric Measures and Traditional Clinical Assessments in Multiple Sclerosis.

Mult Scler Relat Disord

January 2025

Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Background: Oculomotor abnormalities are common in multiple sclerosis (MS) but are not quantitatively evaluated in clinical practice. Oculometric measures (OMs) are characteristics of eye movements captured while performing a visual task, e.g.

View Article and Find Full Text PDF

The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!