Secondary phosphorylation develops in myocytes expressing phospho-mimetic cardiac troponin I (cTnI) but it is not known whether multiple substitutions (e.g. cTnISDTD and cTnIS4D) cause preferential phosphorylation of the remaining endogenous or the phospho-mimetic cTnI in intact myocytes. Western analysis was performed to determine whether the FLAG/total cTnI ratios are similar for phosphorylated versus total cTnI in myocytes expressing phospho-mimetic cTnI with Asp(D) substitutions at S43/45 plus S23/24 (cTnIS4D) or T144 (cTnISDTD). Representative Western analysis of phosphorylated S23/24 (p-S23/24) and S150 (p-S150) are presented along with re-probes using an antibody which detects all cTnI (MAB1691 Ab). The level of p-S150 also is compared to results obtained using single S43D and/or S45D phospho-mimetic substitutions. These results are discussed in more detail in Lang et al. [1].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651495PMC
http://dx.doi.org/10.1016/j.dib.2017.09.066DOI Listing

Publication Analysis

Top Keywords

myocytes expressing
12
secondary phosphorylation
8
phospho-mimetic cardiac
8
cardiac troponin
8
expressing phospho-mimetic
8
phospho-mimetic ctni
8
western analysis
8
ctni
6
phospho-mimetic
5
myocytes
4

Similar Publications

Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases.

Pharmacol Rep

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.

View Article and Find Full Text PDF

Skeletal muscle function gradually declines with aging, presenting substantial health and societal challenges. Comparative analysis of how aging affects fast- and slow-twitch muscles remains lacking. We utilized 20-month-old mice to reveal the aging effects on muscle structure and fiber composition, followed by bulk RNA sequencing for fast- and slow-twitch muscles and integration with human single-cell RNA sequencing dataset providing a comparative analysis across species.

View Article and Find Full Text PDF

Introduction: The risk of kidney fibrosis is significantly elevated in individuals with diabetes, chronic nephritis, trauma, and other underlying conditions. Concurrently, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and their extracellular vesicles (MSC-Exos) have gained prominence in regenerative medicine. In light of these observations, we are undertaking a meta-analysis to elucidate the influence of hUCB-MSCs and MSC-Exos on kidney fibrosis.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage.

View Article and Find Full Text PDF

NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!