Objective: To test the hypothesis that cortical and hippocampal volumes, measured in vivo from volumetric MRI (vMRI) scans, could be used to identify variant subtypes of Alzheimer disease (AD) and to prospectively predict the rate of clinical decline.
Methods: Amyloid-positive participants with AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 1 and ADNI2 with baseline MRI scans (n = 229) and 2-year clinical follow-up (n = 100) were included. AD subtypes (hippocampal sparing [HpSp], limbic predominant [LP], typical AD [tAD]) were defined according to an algorithm analogous to one recently proposed for tau neuropathology. Relationships between baseline hippocampal volume to cortical volume ratio (HV:CTV) and clinical variables were examined by both continuous regression and categorical models.
Results: When participants were divided categorically, the HpSp group showed significantly more AD-like hypometabolism on F-fluorodeoxyglucose-PET ( < 0.05) and poorer baseline executive function ( < 0.001). Other baseline clinical measures did not differ across the 3 groups. Participants with HpSp also showed faster subsequent clinical decline than participants with LP on the Alzheimer's Disease Assessment Scale, 13-Item Subscale (ADAS-Cog), Mini-Mental State Examination (MMSE), and Functional Assessment Questionnaire (all < 0.05) and tAD on the MMSE and Clinical Dementia Rating Sum of Boxes (CDR-SB) (both < 0.05). Finally, a larger HV:CTV was associated with poorer baseline executive function and a faster slope of decline in CDR-SB, MMSE, and ADAS-Cog score ( < 0.05). These associations were driven mostly by the amount of cortical rather than hippocampal atrophy.
Conclusions: AD subtypes with phenotypes consistent with those observed with tau neuropathology can be identified in vivo with vMRI. An increased HV:CTV ratio was predictive of faster clinical decline in participants with AD who were clinically indistinguishable at baseline except for a greater dysexecutive presentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696639 | PMC |
http://dx.doi.org/10.1212/WNL.0000000000004670 | DOI Listing |
Chem Biodivers
January 2025
Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.
View Article and Find Full Text PDFGeroscience
January 2025
Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biophysics, Panjab University, Chandigarh, 160014, India.
Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.
View Article and Find Full Text PDFAnn Nucl Med
January 2025
Department of Radiological Sciences, School of Health Science, Fukushima Medical University, 10-6 Sakae, Fukushima City, Fukushima, 960-8516, Japan.
Objective: This study aims to accurately classify ATN profiles using highly specific amyloid and tau PET ligands and MRI in patients with cognitive impairment and suspected Alzheimer's disease (AD). It also aims to explore the relationship between quantified amyloid and tau deposition and cognitive function.
Methods: Twenty-seven patients (15 women and 12 men; age range: 64-81 years) were included in this study.
Mikrochim Acta
January 2025
College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!