Chronic obstructive pulmonary disease (COPD) patients are at increased risk of developing nonsmall cell lung carcinoma, irrespective of their smoking history. Although the mechanisms behind this observation are not clear, established drivers of carcinogenesis in COPD include oxidative stress and sustained chronic inflammation. Mitochondria are critical in these two processes and recent evidence links increased oxidative stress in COPD patients to mitochondrial damage. We therefore postulate that mitochondrial damage in COPD patients leads to increased oxidative stress and chronic inflammation, thereby increasing the risk of carcinogenesis.The functional state of the mitochondrion is dependent on the balance between its biogenesis and degradation (mitophagy). Dysfunctional mitochondria are a source of oxidative stress and inflammasome activation. In COPD, there is impaired translocation of the ubiquitin-related degradation molecule Parkin following activation of the Pink1 mitophagy pathway, resulting in excessive dysfunctional mitochondria. We hypothesise that deranged pathways in mitochondrial biogenesis and mitophagy in COPD can account for the increased risk in carcinogenesis. To test this hypothesis, animal models exposed to cigarette smoke and developing emphysema and lung cancer should be developed. In the future, the use of mitochondria-based antioxidants should be studied as an adjunct with the aim of reducing the risk of COPD-associated cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488999 | PMC |
http://dx.doi.org/10.1183/16000617.0040-2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!