With the rapid growth and development of synthetic biology, research in the genomics is advancing from genome sequencing to genome synthesis. In 2009, Professor Jef D. Boeke proposed the Synthetic Yeast Genome Project (Sc2.0), which aims to synthesize the world's first eukaryotic genome. With the efforts of scientists from the United States, China, Britain, France, Australia, Singapore and other countries, a third of the Saccharomyces cerevisiae chromosomes has now been synthesized. In the perspectives of synthetic genomics, we here review the recent progress in the Sc2.0 project, including discussion on the right arm of chromosome 9, and chromosomes 2, 5, 6, 10, 12, in terms of their designs and synthetic strategy as well as the biological significance, thereby providing a reference for further research in synthetic genomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16288/j.yczz.17-199 | DOI Listing |
Nat Commun
January 2025
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.
View Article and Find Full Text PDFNat Commun
January 2025
IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Equipe Labélisée Ligue contre le Cancer, Strasbourg, France.
The plasticity of cancer cells facilitates their ability to adopt heterogeneous differentiation states, posing a significant challenge to therapeutic interventions. Specific gene expression programs, driven in part by super-enhancers (SEs), underlie cancer cell states. Here we successfully inhibit SE-driven transcription in phenotypically distinct metastatic melanoma cells using next-generation synthetic ecteinascidins.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany.
The increasing number of contaminants released into the environment necessitates innovative strategies for their detection and identification, particularly in complex environmental matrices like hospital wastewater. Hospital effluents contain both natural and synthetic hormones that might significantly contribute to endocrine disruption in aquatic ecosystems. In this study, HT-EDA has been implemented to identify the main effect-drivers (testosterone, androsterone and norgestrel) from hospital effluent using microplate fractionation, the AR-CALUX bioassay and an efficient data processing workflow.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China. Electronic address:
N-propanol is one of the higher alcohols, a moderate amount of n-propanol is beneficial for the harmony of the liquor body, whereas excessive or repeated intake will lead to discomfort and pose significant harm to human health. In actual production process of Jiangxiangxing Baijiu, the n-propanol content of the base baijiu in first round (FR) is far higher than that of second round (SR). Nevertheless, the formation mechanism and the key n-propanol producing microbials remain unclear and this limits the quality control of baijiu fermentation.
View Article and Find Full Text PDFMetab Eng
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark. Electronic address:
Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!