Background: Using high-throughput sequencing to monitor translation in vivo, ribosome profiling can provide critical insights into the dynamics and regulation of protein synthesis in a cell. Since its introduction in 2009, this technique has played a key role in driving biological discovery, and yet it requires a rigorous computational toolkit for widespread adoption.

Description: We have developed a database and a browser-based visualization tool, riboviz, that enables exploration and analysis of riboseq datasets. In implementation, riboviz consists of a comprehensive and flexible computational pipeline that allows the user to analyze private, unpublished datasets, along with a web application for comparison with published yeast datasets. Source code and detailed documentation are freely available from https://github.com/shahpr/RiboViz . The web-application is live at www.riboviz.org.

Conclusions: riboviz provides a comprehensive database and analysis and visualization tool to enable comparative analyses of ribosome-profiling datasets. This toolkit will enable both the community of systems biologists who study genome-wide ribosome profiling data and also research groups focused on individual genes to identify patterns of transcriptional and translational regulation across different organisms and conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657068PMC
http://dx.doi.org/10.1186/s12859-017-1873-8DOI Listing

Publication Analysis

Top Keywords

ribosome profiling
12
analysis visualization
8
visualization tool
8
datasets
5
riboviz
4
riboviz analysis
4
visualization ribosome
4
profiling datasets
4
datasets background
4
background high-throughput
4

Similar Publications

a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.

View Article and Find Full Text PDF

Protein synthesis is by far the most energetically costly cellular process in rapidly dividing cells. Quantifying translating ribosomes in individual cells and their average mRNA transit rate is arduous. Quantitating assembled ribosomes in individual cells requires electron microscopy and does not indicate ribosome translation status.

View Article and Find Full Text PDF

The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.

View Article and Find Full Text PDF

Unlabelled: Metabolic syndrome and excessive alcohol consumption result in liver injury and fibrosis, which is characterized by increased collagen production by activated Hepatic Stellate Cells (HSCs). LARP6, an RNA-binding protein, was shown to facilitate collagen production. However, LARP6 expression and functionality as a regulator of fibrosis development in a disease relevant model remains elusive.

View Article and Find Full Text PDF

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!