Long noncoding RNAs (LncRNAs) act as crucial regulators in various cancers including osteosarcoma (OS), yet their potential roles and molecular mechanisms in OS chemoresistance remain unclear. In the present study, we investigated the role and potential regulatory mechanism of the most down-regulated expressed lncRNA, FENDRR screened by our previous lncRNA microarray analysis between the paired doxorubicin-resistant and sensitive human osteosarcoma cell lines (MG63/DXR vs MG63). FENDRR expression was down-regulated in the doxorubicin-resistant OS cell lines and tissues and negatively correlated to the poor prognosis of OS patients. Overexpression of FENDRR suppressed doxorubicin-resistance, G2/M phase of cell cycle, and promoted cell apoptosis of osteosarcoma cells and tumor growth whereas FENDRR knockdown had the opposite effects. In addition, we found that FENDRR was mainly located in the cytoplasm and could regulate the drug resistance of osteosarcoma cells by negatively affecting posttranscriptional expression of ABCB1 and ABCC1. Together, our study demonstrated that lncRNA FENDRR may act as an inhibitory molecule of doxorubicin-resistance through down-regulating the expression of ABCB1 and ABCC1 genes in osteosarcoma cells. These findings may extend the function of FENDRR in tumor progression and provide a novel target for reversing OS chemoresistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641097PMC
http://dx.doi.org/10.18632/oncotarget.17985DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
16
lncrna fendrr
12
abcb1 abcc1
12
cell lines
8
expression abcb1
8
fendrr
7
osteosarcoma
6
lncrna
4
fendrr sensitizes
4
sensitizes doxorubicin-resistance
4

Similar Publications

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Canine extraskeletal osteosarcomas are mesenchymal, osteoid producing tumors that can arise in soft tissues without initial involvement of the bones. An 8-year-old intact male Beagle dog presented with anorexia, abdominal pain, intermittent vomiting and melena. The patient had a history of recurrent ingestion of cotton based-toy fragments, but no prior surgical procedures involving the abdominal cavity.

View Article and Find Full Text PDF

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

Background: Osteosarcoma (OS) is the most common primary bone malignancy in the world. Increasing studies indicate that long non-coding RNAs (lncRNAs) are involved in ferroptosis and OS progression. Therefore, this study aims to identify ferroptosis- related lncRNAs (frlncRNAs), explore potential competing endogenous RNA (ceRNA) networks, and establish a new model for predicting OS prognosis.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.

Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!