The helminth parasites possess great capabilities to adapt themselves within their hosts and also develop strategies to render the commonly used anthelmintics ineffective leading to the development of resistance against these drugs. Besides using anthelmintics the natural products have also been tested for their anti-parasitic effects. Therapeutic efficacy of honey bee venom (HBV) has been tested in various ailments including some protozoal infections but very little is known about its anthelmintic properties. To investigate the anthelmintic effect of HBV the excysted progenetic metacercariae of Clinostomum complanatum, a heamophagic, digenetic trematode with zoonotic potential, infecting a wide variety of hosts, were obtained from Trichogaster fasciatus, a forage fish, which serves as the intermediate host. The metacercarial worms were in vitro incubated in RPMI-1640 medium containing HBV along with the controls which were devoid of HBV for the analysis of worm motility, enzyme activity, polypeptide profile and surface topographical changes. The motility of the worms was significantly reduced in a time dependent manner with an increase in the concentration of HBV. Following incubation of worms the release of cysteine proteases was inhibited in the presence of HBV as revealed by gelatine substrate gel zymography. As well as the polypeptide profile was also significantly influenced, particularly intensity/expression of M 19.4 kDa, 24 kDa and 34 kDa was significantly reduced upon HBV treatment. The HBV treatment also inhibited antioxidant enzyme, superoxide dismutase (SOD) and Glutathione-S-transferase (GST) significantly (p < 0.05) in the worms. The scanning electron microscopy of the HBV treated worms revealed tegumental disruptions and erosion of papillae as well as spines showing vacuolation in the tegument. The HBV treated worms also showed a marked decline in the transformation rate when introduced into an experimental host which further reflect the anthelmintic potential of HBV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2017.10.007 | DOI Listing |
Glob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFInt Microbiol
January 2025
Science Faculty, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye.
The Anatolian honey bee (Apis mellifera anatoliaca) and Bombus terrestris are important species in Türkiye. In this context, protecting the health of these honey bees is particularly important. Lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are very important for the health of bees.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
Plants produce floral nectar as a reward for pollinators, which contains carbohydrates and amino acids (AAs). We designed experiments to test whether pollinators could exert selection pressure on the profiles of AAs in nectar. We used HPLC to measure the free AAs and sugars in the nectar of 102 UK plant species.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!