Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Summary: Proteases are enzymes that specifically cleave the peptide backbone of their target proteins. As an important type of irreversible post-translational modification, protein cleavage underlies many key physiological processes. When dysregulated, proteases' actions are associated with numerous diseases. Many proteases are highly specific, cleaving only those target substrates that present certain particular amino acid sequence patterns. Therefore, tools that successfully identify potential target substrates for proteases may also identify previously unknown, physiologically relevant cleavage sites, thus providing insights into biological processes and guiding hypothesis-driven experiments aimed at verifying protease-substrate interaction. In this work, we present PROSPERous, a tool for rapid in silico prediction of protease-specific cleavage sites in substrate sequences. Our tool is based on logistic regression models and uses different scoring functions and their pairwise combinations to subsequently predict potential cleavage sites. PROSPERous represents a state-of-the-art tool that enables fast, accurate and high-throughput prediction of substrate cleavage sites for 90 proteases.
Availability And Implementation: http://prosperous.erc.monash.edu/.
Contact: jiangning.song@monash.edu or geoff.webb@monash.edu or r.pike@latrobe.edu.au.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860617 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btx670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!