Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, fresh vegetables have frequently been associated with the foodborne transmission of enteric viruses, such as human norovirus (NoV). Therefore, several studies have focused on developing methods to inactivate foodborne viruses for preventing outbreaks of foodborne illnesses. Sodium hypochlorite (NaOCl) is commonly used as a disinfectant, but results in undesirable effects on the appearance and taste of foods and can generate toxic byproducts when it exceeds the allowable concentration. Here, we evaluated the efficacy of a range of NaOCl concentrations (50-1000 ppm) for reducing the amounts of human NoV (NoV GII.4) on lettuce (Lactuca sativa), celery (Apium graveolens L.), and white cabbage (Brassica oleracea ssp. capitata). In addition, the combination treatment of NaOCl and sodium metasilicate (SMS, 0.1-0.5%) pentahydrate was evaluated for its ability to decrease the populations of NoV GII.4 in the three food samples. An immunomagnetic separation procedure combined with reverse transcription quantitative polymerase chain reaction was used for virus detection. For lettuce, celery, and cabbage, the NoV GII.4 recovery rates were 57.3% ± 6.5%, 52.5% ± 1.7%, and 60.3% ± 3.9%, respectively, using a glycine/NaCl elution buffer (0.25 M glycine/0.14 M NaCl, pH 9.5). The reductions of NoV GII.4 were 3.17, 3.06, and 3.27 log genomic copies/μL for lettuce, celery, and cabbage, respectively, at 1000 ppm NaOCl, while a reduction of ∼3 log genomic copies/μL was obtained when the samples were treated with a combination of 100 ppm NaOCl and 0.4% SMS pentahydrate. Taken together, these results demonstrated that combined treatment with NaOCl and SMS pentahydrate was an efficient strategy to reduce the concentration of NaOCl for control of NoV GII.4 contamination in fresh vegetables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/fpd.2017.2331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!