Diet is an important lifestyle factor which influences people's health and the prevention of chronic diseases such as type 2 diabetes. Cereal-based foods constitute the main component of the everyday diet worldwide. Old cereal species like spelt (Triticum spelta L.) are becoming more and more popular, especially in Europe. This review focuses on the role of bioactive compounds from spelt and their possible biological mechanisms of action in glycemic control. Spelt grain contains a high amount of dietary fiber, which can modulate postprandial glycemia. Other phytochemicals, such as phytic acid and alkylresorcinols, also contribute to controlling blood glucose levels, insulin sensitivity and hiperinsulinemia. Antioxidant compounds present in spelt grain may act as protection from negative outcomes of chronic hyperglycemia. In this paper the composition and beneficial properties of spelt are also compared with those of widely consumed cereals like common wheat (Triticum aestivum L.). The health benefits of whole grain as opposed to refined products are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/61665DOI Listing

Publication Analysis

Top Keywords

compounds spelt
12
bioactive compounds
8
common wheat
8
glycemic control
8
spelt grain
8
spelt
6
potential role
4
role selected
4
selected bioactive
4
spelt common
4

Similar Publications

Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp.

BMC Genom Data

January 2025

Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.

Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.

Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).

View Article and Find Full Text PDF

Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress.

View Article and Find Full Text PDF

There is growing interest in low-temperature food processing. In the baking industry, low-temperature fermentation improves the production of natural aroma compounds, which have a positive impact on the sensory profile of the final product. The aim of this study was to develop a yeast-lactic acid bacteria starter culture that effectively ferments wheat dough at a temperature of 15 °C.

View Article and Find Full Text PDF

Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!