Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706178 | PMC |
http://dx.doi.org/10.3390/ma10111231 | DOI Listing |
Sci Rep
December 2024
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Industrial and Information Engineering and Economics, University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
NT-MDT BV, 7335 Apeldoorn, The Netherlands.
Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
We developed a rapid and sensitive diagnostic platform that integrates isothermal viral gene amplification with a nucleic acid lateral flow assay (NALFA) to detect SARS-CoV-2 RNA. Isothermal gene amplification was performed by combining reverse transcription of viral RNA with recombinase polymerase amplification (RPA). In our diagnostic platform, DNA primers for the RPA reaction were modified by appending DNA tails, enabling the synthesis of tailed amplicon DNAs.
View Article and Find Full Text PDFSmall
December 2024
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Ferroelectric field-effect transistors (FeFETs) commonly utilize traditional oxide ferroelectric materials for their strong remanent polarization. Yet, integrating them with the standard complementary metal oxide semiconductor (CMOS) process is challenging due to the need for lattice matching and the high-temperature rapid thermal annealing process, which are not always compatible with CMOS fabrication. However, the advent of the ferroelectric semiconductor α-InSe offers a compelling solution to these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!