Naturally produced molecules possessing a C-P bond, such as phosphonates and phosphinates, remain vastly underexplored. Although success stories like fosfomycin have reinvigorated small molecule phosphonate discovery efforts, bioinformatic analyses predict an enormous unexplored biological reservoir of C-P bond-containing molecules, including those attached to complex macromolecules. However, high polarity, a lack of chromophores, and complex macromolecular association impede phosphonate discovery and characterization. Here we detect widespread transcriptional activation of phosphonate biosynthetic machinery across diverse bacterial phyla and describe the use of solid-state nuclear magnetic resonance to detect C-P bonds in whole cells of representative Gram-negative and Gram-positive bacterial species. These results suggest that phosphonate tailoring is more prevalent than previously recognized and set the stage for elucidating the fascinating chemistry and biology of these modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.7b00814 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.
The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.
View Article and Find Full Text PDFJ Clin Immunol
December 2024
Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
Anterior gradient 2 (AGR2) is a protein disulfide isomerase that is important for protein processing in the endoplasmic reticulum and is essential for mucin production in the digestive and respiratory tracts. Bi-allelic AGR2 variants were recently found to cause recurrent respiratory infections and failure to thrive with or without diarrhea (RIFTD; MIM # 620233), although the mechanisms behind this condition remain unclear. To date, at least 15 patients with homozygous AGR2 variants have been reported.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Shahid Beheshti University, Tehran 19839-69411, Iran.
This study investigates possible pathways arising from the reaction of anionic K[Pt(C^N)(-MeCH)(CN)] complexes, C^N = 2-phenylpyridinate (ppy) and 7,8-benzo[h]quinolate (bzq), with trifluoroacetic acid (TFA), which has been employed in both experimental and computational approaches. Experimental studies clarify that the products of the protonolysis reaction can vary in the K[Pt(C^N)(-MeCH)(CN)] complex depending on the type of the cyclometalated ligand. In the cyclometalated complex with ppy, only one product was observed, resulting from the cleavage of the Pt-C bond of the cyclometalated ligand.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, Padova, 35131, Italy.
This work reports single-crystal X-ray diffraction (XRD), Scanning Tunneling Microscopy (STM), and quantum mechanics calculations of the 3-helical peptide Z-(Aib)-L-Dap(Boc)-Aib-NHiPr (Aib, α-aminoisobutyric acid; Dap, 2,3-diaminopropionic acid; Z, benzyloxycarbonyl; Boc, t-butoxycarbonyl). The peptide forms a double-helical superstructure, studied by XRD and STM. Such architecture is rare in short peptides.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China.
The development of materials with high ambipolar mobility is pivotal for advancing multifunctional applications, yet such materials remain scarce. Presently, cubic boron arsenide (BAs) stands out as the premier ambipolar material, demonstrating an ambipolar mobility of ∼1600 cm V s at room temperature [ 2022, 377, 433 and 2022, 377, 437]. Herein, we illustrate that semiconducting AlBC, featuring a nonclathrate B-C framework in which a C atom bonds to the vertices of four distorted hexagonal antiprism B units via quasi-sp hybridization, is predicted to possess ambipolar carrier transport behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!