In this paper, we propose a general formalism that allows for the estimation of radiolysis decomposition pathways and rate coefficients suitable for use in astrochemical models, with a focus on solid phase chemistry. Such a theory can help increase the connection between laboratory astrophysics experiments and astrochemical models by providing a means for modelers to incorporate radiation chemistry into chemical networks. The general method proposed here is targeted particularly at the majority of species now included in chemical networks for which little radiochemical data exist; however, the method can also be used as a starting point for considering better studied species. We here apply our theory to the irradiation of HO ice and compare the results with previous experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp05901a | DOI Listing |
ACS Earth Space Chem
December 2024
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Rate coefficients for the reaction of CH with CHO were measured for the first time over the temperature range of 37-603 K, with the CH radicals produced by pulsed laser photolysis and detected by CH radical chemiluminescence following their reaction with O. The low temperature measurements (≤93 K) relevant to the interstellar medium were made within a Laval nozzle gas expansion, while higher temperature measurements (≥308 K) were made within a temperature controlled reaction cell. The rate coefficients display a negative temperature dependence below 300 K, reaching (1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822.
The cyclopentadiene (CH) molecule has emerged as a molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures such as corannulene (CH), nanobowls (CH), and fullerenes (C) in deep space. However, the underlying elementary gas-phase processes synthesizing cyclopentadiene from acyclic hydrocarbon precursors have remained elusive. Here, by merging crossed molecular beam experiments with rate coefficient calculations and comprehensive astrochemical modeling, we afford persuasive testimony on an unconventional low-temperature cyclization pathway to cyclopentadiene from acyclic precursors through the reaction of the simplest diatomic organic radical-methylidyne (CH)-with 1,3-butadiene (CH) representing main route to cyclopentadiene observed in TaurusMolecular Cloud.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Cryogenic solid -hydrogen (-H) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, University of Sussex Falmer Brighton BN1 9QJ UK
Complex organic molecules (COMs) have been detected in a wide range of astrophysical environments, including the interstellar medium, comets and proto-planetary disks. The icy mantles that form on dust grains in these environments are thought to be the chemical nurseries that allow the formation of many of the COMs that have been identified. As such, the adsorption, thermal processing and desorption of COMs from dust grain surfaces are important in understanding the astrochemical networks as a whole.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy.
Interest in the observation and characterization of organic isomers in astronomical environments has grown rapidly with an increase in the sensitivity of detection techniques. Accurate modeling and interpretation of these environments require experimental isomer-specific reactivity and spectroscopic measurements. Given the abundance of formaldehyde (HCO) in various astrophysical objects, the properties and reactivities of its cation isomers HCO and HCOH are of significant interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!