Spontaneous canine malignant melanoma provides an excellent pre-clinical model to study DNA vaccines for melanoma immunotherapy. A USDA-approved xenogeneic human tyrosinase (huTYR) plasmid DNA vaccine delivered intramuscularly induces detectable immune responses and has clinical activity in some dogs with melanoma. The objective of this pilot study was to evaluate the feasibility, safety and immunogenicity of huTYR plasmid DNA administered to the skin via microseeding in dogs with spontaneous melanoma. DNA microseeding utilizes a modified tattooing device as an alternate and potentially more potent delivery method for DNA immunization. DNA was delivered to shaved inner thigh skin of six companion dogs with melanoma approximately every 14 days for a planned total of four vaccination time points. An anti-huTYR ELISA was used to test pre- and post-treatment sera. Biopsies of treated skin were obtained for detection of huTYR transgene expression. DNA microseeding was well tolerated with no significant toxicity detected beyond local site irritation, and there were no signs of autoimmunity. huTYR-expressing cells were observed in biopsies of huTYR DNA microseeding sites. Increased humoral anti-huTYR antibodies were seen in two of five evaluable dogs following microseeding compared to baseline. DNA microseeding is well tolerated in companion dogs with melanoma. Further investigation is needed to determine if combining DNA microseeding with other immunotherapy regimens potentiates this delivery platform for cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645840PMC
http://dx.doi.org/10.1002/vms3.65DOI Listing

Publication Analysis

Top Keywords

dna microseeding
24
dogs melanoma
12
dna
11
pilot study
8
microseeding
8
spontaneous canine
8
hutyr plasmid
8
plasmid dna
8
companion dogs
8
microseeding well
8

Similar Publications

Spontaneous canine malignant melanoma provides an excellent pre-clinical model to study DNA vaccines for melanoma immunotherapy. A USDA-approved xenogeneic human tyrosinase (huTYR) plasmid DNA vaccine delivered intramuscularly induces detectable immune responses and has clinical activity in some dogs with melanoma. The objective of this pilot study was to evaluate the feasibility, safety and immunogenicity of huTYR plasmid DNA administered to the skin via microseeding in dogs with spontaneous melanoma.

View Article and Find Full Text PDF

Dysregulation of immune response in skin is associated with numerous human skin disorders. Direct transfer of immune-related genes into skin tissue is a fascinating approach to investigate immune modulation of cutaneous inflammation in mouse models of human diseases. Here we present a cost-effective protocol that delivered naked DNA in mouse skin and leads to transgene expression.

View Article and Find Full Text PDF

Traditional methods for addressing chronic wounds focus on correcting dysfunction by controlling extracellular elements. This review highlights technologies that take a different approach - enhancing chronic wound healing by genetic modification to wound beds. Featured cutaneous transduction/transfection methods include viral modalities (ie adenoviruses, adeno-associated viruses, retroviruses and lentiviruses) and conventional non-viral modalities (ie naked DNA injections, microseeding, liposomal reagents, particle bombardment and electroporation).

View Article and Find Full Text PDF

Characterization, crystallization and preliminary X-ray crystallographic analysis of the Uba5 fragment necessary for high-efficiency activation of Ufm1.

Acta Crystallogr F Struct Biol Commun

June 2014

MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China.

Uba5 is the smallest ubiquitin-like molecule-activating enzyme and contains an adenylation domain and a C-terminal region. This enzyme only exists in multicellular organisms. The mechanism through which the enzyme recognizes and activates ubiquitin-fold modifier 1 (Ufm1) remains unknown.

View Article and Find Full Text PDF

Crystallization and preliminary X-ray diffraction analysis of the human XRCC4-XLF complex.

Acta Crystallogr Sect F Struct Biol Cryst Commun

November 2011

Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.

XRCC4 and XLF are key proteins in the repair of DNA double-strand breaks through nonhomologous end-joining. Together, they form a complex that stimulates the ligation of double-strand breaks. Owing to the suggested filamentous nature of this complex, structural studies via X-ray crystallography have proven difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!