In the present study, we examined whether social categorization based on university affiliation can induce an advantage in recognizing faces. Moreover, we investigated how the reputation or location of the university affected face recognition performance using an old/new paradigm. We assigned five different university labels to the faces: participants' own university and four other universities. Among the four other university labels, we manipulated the academic reputation and geographical location of these universities relative to the participants' own university. The results showed that an own-group face recognition bias emerged for faces with own-university labels comparing to those with other-university labels. Furthermore, we found a robust own-group face recognition bias only when the other university was located in a different city far away from participants' own university. Interestingly, we failed to find the influence of university reputation on own-group face recognition bias. These results suggest that categorizing a face as a member of one's own university is sufficient to enhance recognition accuracy and the location will play a more important role in the effect of social categorization on face recognition than reputation. The results provide insight into the role of motivational factors underlying the university membership in face perception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641343 | PMC |
http://dx.doi.org/10.3389/fpsyg.2017.01734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!