Background: Detection of important functional and/or structural elements and identification of their positions in a large eukaryotic genomic sequence are an active research area. Gene is an important functional and structural unit of DNA. The computation of gene prediction is, therefore, very essential for detailed genome annotation.

Results: In this paper, we propose a new gene prediction technique based on Genetic Algorithm (GA) to determine the optimal positions of exons of a gene in a chromosome or genome. The correct identification of the coding and non-coding regions is difficult and computationally demanding. The proposed genetic-based method, named Gene Prediction with Genetic Algorithm (GPGA), reduces this problem by searching only one exon at a time instead of all exons along with its introns. This representation carries a significant advantage in that it breaks the entire gene-finding problem into a number of smaller sub-problems, thereby reducing the computational complexity. We tested the performance of the GPGA with existing benchmark datasets and compared the results with well-known and relevant techniques. The comparison shows the better or comparable performance of the proposed method. We also used GPGA for annotating the human chromosome 21 (HS21) using cross-species comparisons with the mouse orthologs.

Conclusion: It was noted that the GPGA predicted true genes with better accuracy than other well-known approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655831PMC
http://dx.doi.org/10.1186/s12859-017-1874-7DOI Listing

Publication Analysis

Top Keywords

genetic algorithm
12
gene prediction
12
large eukaryotic
8
eukaryotic genomic
8
gene
5
optimized approach
4
approach annotation
4
annotation large
4
genomic sequences
4
sequences genetic
4

Similar Publications

This document aims to provide good practice recommendations in order to support maternal-foetal medicine specialists, clinical geneticists and clinical laboratory geneticists in the management of pregnancies obtained after the transfer of an embryo tested with preimplantation genetic testing (PGT). It was drafted by geneticists expert in preimplantation genetics and prenatal genetic diagnosis belonging to the "Working Group in Cytogenomics, Prenatal and Reproductive Genetics" of the "Italian Society of Human Genetics" (SIGU). In particular, the paper addresses the diagnostic algorithm to be applied in prenatal follow-up depending on the type of PGT performed, the results obtained and the related diagnostic value based on the most recent literature data and Italian and international recommendations.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

With the increasing intelligence and diversification of communication interference in recent years, communication interference resource scheduling has received more attention. However, the existing interference scenario models have been developed mostly for remote high-power interference with a fixed number of jamming devices without considering power constraints. In addition, there have been fewer scenario models for short-range distributed communication interference with a variable number of jamming devices and power constraints.

View Article and Find Full Text PDF

Reliable prediction of photovoltaic power generation is key to the efficient management of energy systems in response to the inherent uncertainty of renewable energy sources. Despite advances in weather forecasting, photovoltaic power prediction accuracy remains a challenge. This study presents a novel approach that combines genetic algorithms and dynamic neural network structure refinement to optimize photovoltaic prediction.

View Article and Find Full Text PDF

Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!