AI Article Synopsis

  • This journal expands on previous research regarding how arginine and other solvent additives interact with proteins, specifically in the context of column chromatography.
  • The authors discuss their earlier studies on various solvent additives—like sugars, salts, and polymers—and how these interactions lead to important insights into protein stabilization and precipitation effects, linked to the Hofmeister series.
  • The rapid advancements in genetic engineering and biotechnology have made this understanding of solvent additives crucial for effectively manipulating protein solutions in practical applications like column chromatography.

Article Abstract

Previously, we have reviewed in this journal (Arakawa, T., Kita, Y., Curr. Protein Pept. Sci., 15, 608-620, 2014) the interaction of arginine with proteins and various applications of this solvent additive in the area of protein formulations and downstream processes. In this special issue, we expand the concept of protein-solvent interaction into the analysis of the effects of solvent additives on various column chromatography, including mixed-mode chromatography. Earlier in our research, we have studied the interactions of such a variety of solvent additives as sugars, salts, amino acids, polymers and organic solvents with a variety of proteins, which resulted in mechanistic understanding on their protein stabilization and precipitation effects, the latter known as Hofmeister series. While such a study was then a pure academic research, rapid development of genetic engineering technologies and resultant biotechnologies made it a valuable knowledge in fully utilizing solvent additives in manipulation of protein solution, including column chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389203718666171024121529DOI Listing

Publication Analysis

Top Keywords

solvent additives
12
protein-solvent interaction
8
column chromatography
8
protein
5
solvent
5
protein solvent
4
interaction
4
solvent interaction
4
interaction transition
4
transition protein-solvent
4

Similar Publications

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

A Mn(III)-mediated radical cascade cyclization of -propargyl enamides with sodium sulfinates was developed. Mechanistic studies indicated that this cascade process is mainly composed of the chemoselective addition of sulfonyl radical to C≡C bond and the regioselective intramolecular 6--trig cyclization. This protocol provided a powerful method for the divergent synthesis of diverse polysubstituted -sulfonylpyridines or 1,2-dihydropyridines just by varying solvent and temperature featuring good functional group compatibility and simple operation.

View Article and Find Full Text PDF

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

Structural Basis of Ultralow Capacitances at Metal-Nonaqueous Solution Interfaces.

J Am Chem Soc

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!