Separation of Nucleic Acids Using Single- and Multimodal Chromatography.

Curr Protein Pept Sci

Pure and Applied Biochemistry, Chemical Center, Lund University, Lund, Sweden.

Published: December 2018

The needs for purified nucleic acids for preparative and analytical applications have increased constantly, demanding for the development of new and more efficient methods for their recovery and isolation. DNA molecules harbour some intrinsic chemical properties that render them suitable for chromatographic separations. These include a negatively charged phosphate backbone as well as a hydrophobic character originating mainly from the major groove of DNA which exposes the base pairs on the surface of the molecule. In addition, single stranded DNA often allows for a free exposure of the hydrophobic aromatic bases. In this review, multimodal chromatography (MMC) has been evaluated as an alternative tool for complex separations of nucleic acids. MMC embraces more than one kind of interaction between the chromatographic ligand and the target molecules. These resins have often proved superior to conventional single-mode chromatographic materials for DNA isolation, including, e.g., the purification of plasmid DNA from crude cell lysates and for the preparation of DNA fragments before or after a polymerase chain reaction (PCR).

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389203718666171024112556DOI Listing

Publication Analysis

Top Keywords

nucleic acids
12
multimodal chromatography
8
dna
6
separation nucleic
4
acids single-
4
single- multimodal
4
chromatography purified
4
purified nucleic
4
acids preparative
4
preparative analytical
4

Similar Publications

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!