Ultrasensitive Detection of Methylmercaptan Gas Using Layered Manganese Oxide Nanosheets with a Quartz Crystal Microbalance Sensor.

Anal Chem

Center for Material Design Science, School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.

Published: November 2017

Methylmercaptan (MM) is a marker of periodontal disease; however, the required sensitivity for MM is parts per billion, which has been challenging to realize with a simple sensor. Here, we report the capability to detect MM at concentrations as low as 20 ppb using layered manganese oxide nanosheets with a quartz crystal microbalance sensor. The sensing capabilities of the manganese oxide nanosheets are promoted by adsorbed water present on and between the nanosheets. The strong adsorption of MM to the sensor, which is necessary for the high sensitivity, leads to significant hysteresis in the response on cycling due to irreversible adsorption. However, the sensor can be readily reset by heating to 80 °C, which leads to highly reproducible response to MM vapor at low concentrations. A key aspect of this sensor design is the high selectivity toward MM in comparison to other compounds such as ethanol, ammonia, acetaldehyde, acetic acid, toluene, and pyridine. This layered nanosheets design for high-sensitivity sensors, demonstrated here for dilute MM, holds significant promise for addressing needs to identify sulfur compounds associated for environmental protection and medical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b02738DOI Listing

Publication Analysis

Top Keywords

manganese oxide
12
oxide nanosheets
12
layered manganese
8
nanosheets quartz
8
quartz crystal
8
crystal microbalance
8
microbalance sensor
8
adsorption sensor
8
sensor
6
nanosheets
5

Similar Publications

Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity.

Nano Lett

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles.

View Article and Find Full Text PDF

Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Bioremediation of Heavy Metal-Contaminated Solution and Aged Refuse by Microbially Induced Calcium Carbonate Precipitation: Further Insights into .

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.

View Article and Find Full Text PDF

Controllable synthesis of nonlayered high-κ MnO single-crystal thin films for 2D electronics.

Nat Commun

January 2025

State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Two-dimensional (2D) materials have been identified as promising candidates for future electronic devices. However, high dielectric constant (κ) materials, which can be integrated with 2D semiconductors, are still rare. Here, we report a hydrate-assisted thinning chemical vapor deposition (CVD) technique to grow manganese oxide (MnO) single crystal nanosheets, enabled by a strategy to minimize the substrate lattice mismatch and control the growth kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!