Background/aims: The aim of the present study is to investigate the effect of long non-coding RNA-MALAT1 (LncRNA-MALAT1) on retinal ganglion cell (RGC) apoptosis mediated by the PI3K/Akt signaling pathway in rats with glaucoma.

Methods: RGCs were isolated and cultured, and monoclonal antibodies (anti-rat Thy-1, Brn3a and RBPMS) were examined by immunocytochemistry. An overexpression vector MALAT1-RNA activation (RNAa), gene knockout vector MALAT1-RNA interference (RNAi), and control vector MALAT1-negative control (NC) were constructed. A chronic high intraocular pressure (IOP) rat model of glaucoma was established by episcleral vein cauterization. The RGCs were divided into the RGC control, RGC pressure, RGC pressure + MALAT1-NC, RGC pressure + MALAT1-RNAi and RGC pressure + MALAT1-RNAa groups. Sixty Sprague-Dawley (SD) rats were randomly divided into the normal, high IOP, high IOP + MALAT1-NC, high IOP + MALAT1-RNAa and high IOP + MALAT1-RNAi groups. qRT-PCR and western blotting were used to detect the expression levels of LncRNA-MALAT1 and PI3K/Akt. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect RGC apoptosis.

Results: Immunocytochemistry revealed that the cultured RGCs reached 90% purity. Compared with the RGC pressure + MALAT1-NC group, the RGC pressure + MALAT1-RNAa group exhibited elevated expression levels of MALAT1, lower total protein levels of PI3K and Akt and decreased RGC apoptosis, while these expression levels were reversed in the RGC pressure + MALAT1-RNAi group. RGC numbers and PI3K/Akt expression levels in the high IOP model groups were lower than those in the normal group. In the high IOP + MALAT1-RNAa group, the mRNA and protein expression levels of PI3K/Akt were reduced but higher than those in the other three high IOP model groups. Additionally, RGC numbers in the high IOP + MALAT1-RNAa group were lower than those in the normal group but higher than those in the other three high IOP model groups.

Conclusion: Our study provides evidence that LncRNA-MALAT1 could inhibit RGC apoptosis in glaucoma through activation of the PI3K/Akt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000484231DOI Listing

Publication Analysis

Top Keywords

high iop
36
rgc pressure
28
expression levels
20
rgc
14
pi3k/akt signaling
12
signaling pathway
12
rgc apoptosis
12
iop malat1-rnaa
12
malat1-rnaa group
12
iop model
12

Similar Publications

Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.

View Article and Find Full Text PDF

Compartmental analysis of retinal vascular parameters and thickness in myopic eyes using SS-OCTA.

Front Med (Lausanne)

December 2024

Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Background: This study aimed to comprehensively explore the thickness and topographic distributions of retinal vessel alterations of different myopic eyes by using swept-source OCT angiography (SS-OCTA).

Methods: One hundred myopes were included in this observational cross-sectional study. All participants underwent a series of ocular examinations of biometrical parameters, including spherical equivalent refraction (SER), axial length (AL), intraocular pressure (IOP), curvature radius (CR), and others.

View Article and Find Full Text PDF

Objectives: Femtosecond laser image guided high precision trabeculotomy (FLigHT) is a novel open-angle glaucoma treatment. The procedure non-invasively creates aqueous humor (AH) drainage channel from the anterior chamber (AC) to Schlemm's canal (SC) through the trabecular meshwork (TM) to decrease intraocular pressure (IOP). The purpose of this study was to develop a 3D finite element model (FEM) of the FLigHT procedure and to simulate clinical results for different drainage channel cross-sectional areas.

View Article and Find Full Text PDF

Purpose: This study aims to evaluate the inter-observer variability in assessing the optic disc in fundus photographs and its implications for establishing ground truth in AI research.

Methods: Seventy subjects were screened during a screening campaign. Fundus photographs were classified into normal (NL) or abnormal (GS: glaucoma and glaucoma suspects) by two masked glaucoma specialists.

View Article and Find Full Text PDF

Budesonide nasal irrigation for chronic rhinosinusitis: a meta-analysis of therapeutic outcomes and safety profile.

Rhinology

December 2024

Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.

Background: Corticosteroids are used in managing Chronic Rhinosinusitis (CRS) through several formulations, including oral steroids and nasal sprays. More recently, incorporating concentrated budesonide respules into high-volume saline irrigations has been proposed to enhance the penetration of topical steroids into the paranasal sinuses. We aim to evaluate the safety and efficacy of budesonide nasal irrigation (BNI) in managing CRS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!