Theoretical and empirical studies suggest that the total energy available in natural communities influences body size as well as patterns of abundance and diversity. But the precise mechanisms underlying these relationships or how these three ecological properties relate remain elusive. We identify five hypotheses relating energy availability, body size distributions, abundance, and species richness within communities, and we use experimental deep-sea wood fall communities to test their predicted effects both on descriptors describing the species-richness-body-size distribution, and on trends in species richness within size classes over an energy gradient (size-class-richness relationships). Invertebrate communities were taxonomically identified, weighed, and counted from 32 Acacia sp. logs ranging in size from 0.6 to 20.6 kg (corresponding to different levels of energy available), which were deployed at 3,203 m in the Northeast Pacific Ocean for 5 and 7 yr. Trends in both the species-richness-body-size distribution and the size-class-richness distribution with increasing wood fall size provide support for the Increased Packing hypothesis: species richness increases with increasing wood fall size but only in the modal size class. Furthermore, species richness of body size classes reflected the abundance of individuals in that size class. Thus, increases in richness in the modal size class with increasing energy were concordant with increases in abundance within that size class. The results suggest that increases in species richness occurring as energy availability increases may be isolated to specific niches, e.g., the body size classes, especially in communities developing on discrete and energetically isolated resources such as deep sea wood falls.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2055DOI Listing

Publication Analysis

Top Keywords

species richness
20
body size
16
size class
16
size
12
wood fall
12
size classes
12
increases richness
8
deep-sea wood
8
wood falls
8
energy availability
8

Similar Publications

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

Exploring Co-Occurrence Patterns to Understand Epiphyte-Liana Interactions.

Plants (Basel)

January 2025

Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Yerba Buena 4107, Tucumán, Argentina.

Although epiphytes and lianas share the same habitat, most research has treated these two groups independently. This study aimed to evaluate the co-occurrence of vascular epiphytes and lianas in the subtropical montane forests of northwestern Argentina. We recorded epiphyte cover and liana basal area on trees ≥ 10-cm-dbh in 120 20 × 20 m plots in the Sierra de San Javier (Tucumán, Argentina).

View Article and Find Full Text PDF

Intestinal microorganisms are essential for maintaining homeostasis, health, and development, playing a critical role in nutrient digestion, growth, and exercise performance in pigeons. In young pigeons, the gut microbiota is primarily acquired through pigeon milk, meaning the microbial composition of parent pigeons directly influences microbial colonization in squabs. However, research on the correlation between the gut microbial diversity of parent pigeons and their offspring remains scarce.

View Article and Find Full Text PDF

The growth of cities is one of the main direct and indirect factors responsible for the loss of native vegetation cover. Urbanization directly affects the biological communities inhabiting forest remnants inserted in cities, compromising the maintenance of urban and natural ecosystems. By understanding the effects of landscape transformation due to urbanization, we can have insights regarding the distribution of land uses that allow a proper maintenance of the urban ecosystems.

View Article and Find Full Text PDF

Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!