Thiol-ene (TE)-based polymer particles are traditionally prepared via emulsion polymerization in water (using surfactants, stabilizers, and cosolvents). Here, a green and simple alternative is presented with excellent control over particle size, while avoiding the addition of stabilizers. Glycerol is applied as a dispersing medium for the preparation of off-stoichiometric TE microparticles, where sizes in the range of 40-400 µm are obtained solely by changing the mixing speed of the emulsions prior to crosslinking. Control over surface chemistry is achieved by surface functionalization of excess thiol groups via photochemical thiol-ene chemistry resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization is used for the first time to introduce a thicker polymer layer on the particle surface. The application potential of the system is demonstrated by using functional particles as adsorbent for metal ions and as a support for immobilized enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201700394DOI Listing

Publication Analysis

Top Keywords

surface functionalization
8
thiol-ene chemistry
8
surface chain
8
chain transfer
8
transfer free
8
free radical
8
radical polymerization
8
surface
6
simple preparation
4
thiol-ene
4

Similar Publications

Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.

View Article and Find Full Text PDF

Understanding the Curvature Effect on the Structure and Bonding of MoC Nanoparticles on Carbon Supports.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.

View Article and Find Full Text PDF

Electromechanics of the Molecule-Electrode Interface and Interface-Mediated Effects in Single-Molecule Junctions.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

The molecule-electrode interface can regulate both the efficiency and pathways of electron transport through single-molecule junctions (SMJs). The electromechanics of the interface has proven crucial in exposing the underlying mechanisms of electron transmission through SMJs, providing a theoretical base and practical guidance for designing and constructing functional molecular devices. Here we encompass several currently developed methodologies for investigating the electromechanics of molecule-electrode interface and provide an account of their application in elucidating the effects of the molecule-electrode interface on electron transport properties of SMJs.

View Article and Find Full Text PDF

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

Echocardiographic evaluation of inferior vena cava diameters and collapsibility index in healthy children.

Arch Argent Pediatr

January 2025

Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit, Hospital de Gineco Obstetricia N.° 4, Luis Castelazo Ayala, Instituto Mexicano de Seguro Social, Mexico City, Mexico.

Introduction. Echocardiographic measurement of inferior vena cava diameters and collapsibility index (IVCCI) can estimate right heart chamber function and intravascular volume status. Few reports of reference values for diameters and IVCCI in the pediatric population exist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!