The excited state properties of three heteroleptic copper(I) xantphos 4H-imidazolate complexes are investigated by means of femtosecond and nanosecond time-resolved transient absorption spectroscopy in dichloromethane solution. The subpicosecond spectral changes observed after excitation into the MLCT absorption band are interpreted as intersystem crossing from the singlet to the triplet manifold. This interpretation is corroborated by DFT and TD-DFT results, indicating a comparable molecular geometry in the ground state (and hence the nonrelaxed singlet state) and the excited triplet state. Population of the triplet state is followed by planarization of the N-aryl rings of the 4H-imidazolate ligand on a 10 ps time scale. The planarization strongly depends on the substitution pattern of the N-aryls and correlates with the reduced moment of inertia for the planarization motion. The triplet state subsequently decays to the ground state in about 100 ns. These results demonstrate that the excited state processes of copper(I) complexes depend on the specific ligand(s) and their substitution pattern. Thus, the work presented points to a possibility to design copper(I) complexes with specific photophysical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.7b01680 | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.
With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Automation, Beijing Institute of Technology, Beijing 100081, China.
Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
With the advent of the 5G era, high-precision localization based on mobile communication networks has become a research hotspot, playing an important role in indoor emergency rescue in shopping malls, smart factory management and tracking, as well as precision marketing. However, in complex environments, non-line-of-sight (NLOS) propagation reduces the measurement accuracy of 5G signals, causing large deviations in position solving. In order to obtain high-precision position information, it is necessary to recognize the propagation state of the signal before distance measurement or angle measurement.
View Article and Find Full Text PDFJ Clin Med
January 2025
Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.
Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!