Much research has been done on bone cells, but only a few studies deal with biomaterial-induced effects on human osteoclasts, which may take on an important role in the successful regeneration of bone. In order to highlight such effects, human peripheral blood mononuclear cells (PBMCs) were extracted from venous blood, differentiated to osteoclasts and then cultured in, the presence of five particulate hydroxyapatite (HA)/β-tricalcium phosphate (TCP) biomaterials, on bovine bone slices and glass cover slips. The biomaterials, AlgOSS 50/50 (50 % HA/50 % TCP), AlgOSS 20/80 (20 % HA/80 % TCP), Algipore (98 % HA), Cerasorb (100 % TCP) and Bio-Oss (100 % HA) were chosen to assess their influence on cell morphology and numbers. Light microscopic evaluation was performed during ongoing cell culture. After 21 d of cultivation, the biomaterial-induced effects on osteoclastic resorption of the bone slices were evaluated by scanning electron microscopy (SEM). Osteoclast-like cells were identified by TRAP staining. All five biomaterials showed larger area fractions of resorbed bone than the control (5.6 ± 6.8 %), as measured on SEM images. The purely hydroxyapatite-based Algipore (9.8 ± 9.7 %) and Bio-Oss (7.9 ± 8.8 %) showed significantly elevated area fraction rates (p ≤ 0.05) of bone resorption. Light microscope evaluation revealed a significant, but inhibiting effect of Cerasorb (p = 0.05). These data indicated that introducing of small biomaterial hydroxyapatite particles may have improved the performance of bone substitute materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/eCM.v034a18 | DOI Listing |
Diagn Cytopathol
January 2025
Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.
Solitary plasmacytomas are localized single tumors of monoclonal plasma cells that occur in two variants: solitary plasmacytoma of bone and extraosseous plasmacytoma. Solitary plasmacytoma of bone accounts for only 1%-2% of plasma cell lesions, and extraosseous plasmacytoma is also approximately 1%. These are both very uncommon at the skull base.
View Article and Find Full Text PDFClin Otolaryngol
January 2025
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Introduction: The nasoseptal flap (NSF) has become a widely favoured choice for reconstructing skull base defects following the endoscopic endonasal approach (EEA). However, the exposed septal cartilage and bone at the donor site often require an extended duration for secondary healing. This study investigated whether the free middle turbinate (MT) mucosa grafting at the septal donor site could mitigate post-operative nasal morbidity.
View Article and Find Full Text PDFKnee
December 2024
Orthopedic Surgery and Traumatology, Hospital Clínic de Barcelona, Barcelona, Spain.
Distal femoral replacement (DFR) with megaprostheses is a salvage revision total knee arthroplasty (rTKA) procedure indicated in cases with massive bone defects in the distal femur. As long as these implants achieve fixation only in the diaphysis, the high aseptic loosening rate reported in some series is probably related to a lack of rotational stability. Two patients with extensive distal femoral bone defects with preservation of the metaphyseal-diaphyseal junction underwent rTKA.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
An 18-year-old female patient presented with a 1-month history of low back pain, which had worsened and was accompanied by radiating pain in the right lower limb for half a month. She was admitted to our hospital with computed tomography and magnetic resonance imaging findings suggesting calcification of the L3/4 disc and a large intraspinal mass at the L2-4 level. The patient's symptoms did not improve with conservative treatment, and her muscle strength rapidly declined.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Ophthalmology Department, Tongxiang First People's hospital, No. 1918 Jiaochang East Road, Tongxiang, Zhejiang 314500, China.
Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!