The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738618 | PMC |
http://dx.doi.org/10.1590/1678-4685-GMB-2016-0132 | DOI Listing |
FASEB J
January 2025
Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.
View Article and Find Full Text PDFGene Ther
January 2025
Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China.
The approved intravenous adeno-associated virus (AAV) therapies are limited by the widespread prevalence of pre-existing anti-AAV antibodies in the general population, which are known to restrict patients' ability to receive gene therapy and limit transfection efficacy in vivo. To address this challenge, we have developed a novel recombinant human immunoglobulin G degrading enzyme KJ103, characterized by low immunogenicity and clinical value for the elimination of anti-AAV antibodies in gene transfer. Herein, we conducted two randomized, blinded, placebo-controlled, single ascending dose Phase I studies in China and New Zealand, to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of KJ103 in healthy volunteers.
View Article and Find Full Text PDFSci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
Due to the larger pore structure, the macroporous material can be used as the immobilized carrier to not only increase the enzyme loading capacity, but also facilitate the transfer of reactants and substrates. Based on this, a three-dimensional ordered macro-microporous ZIF-8 (SOM-ZIF-8) was prepared using three-dimensional ordered stacked polystyrene spheres as the hard template. The morphology and structure of SOM-ZIF-8 were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and so on.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!