Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thiocyanate (SCN) is a contaminant requiring remediation in gold mine tailings and wastewaters globally. Seepage of SCN-contaminated waters into aquifers can occur from unlined or structurally compromised mine tailings storage facilities. A wide variety of microorganisms are known to be capable of biodegrading SCN; however, little is known regarding the potential of native microbes for in situ SCN biodegradation, a remediation option that is less costly than engineered approaches. Here we experimentally characterize the principal biogeochemical barrier to SCN biodegradation for an autotrophic microbial consortium enriched from mine tailings, to arrive at an environmentally realistic assessment of in situ SCN biodegradation potential. Upon amendment with phosphate, the consortium completely degraded up to ∼10 mM SCN to ammonium and sulfate, with some evidence of nitrification of the ammonium to nitrate. Although similarly enriched in known SCN-degrading strains of thiobacilli, this consortium differed in its source (mine tailings) and metabolism (autotrophy) from those of previous studies. Our results provide a proof of concept that phosphate limitation may be the principal barrier to in situ SCN biodegradation in mine tailing waters and also yield new insights into the microbial ecology of in situ SCN bioremediation involving autotrophic sulfur-oxidizing bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b04152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!